This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288507 #22 Jul 24 2017 01:55:14 %S A288507 24,319,738,57360,1077529,116552943 %N A288507 Least number k such that both prime(k+1) -/+ prime(k) are products of n prime factors (counting multiplicity). %C A288507 Prime(k) + prime(k+1) cannot be semiprime, so the offset is 3. %C A288507 For n=3 to 8, all terms k happen to satisfy prime(k+1) - prime(k) = 2^n. - _Michel Marcus_, Jul 24 2017 %e A288507 n = 8: k = 116552943, p = prime(k) = 2394261637, q = prime(k+1) = 2394261893; both q-p = 2^8 and p+q = 2*3^2*5*7^3*155119 are 8-almost primes (A046310). %o A288507 (PARI) a(n) = my(k = 1, p = 2, q = nextprime(p+1)); while((bigomega(p+q)!= n) || (bigomega(p-q)!= n), k++; p = q; q = nextprime(p+1)); k; \\ _Michel Marcus_, Jul 24 2017 %o A288507 (Python) %o A288507 from sympy import factorint, nextprime %o A288507 def A288507(n): %o A288507 k, p, q = 1, 2, 3 %o A288507 while True: %o A288507 if sum(factorint(q-p).values()) == n and sum(factorint(q+p).values()) == n: %o A288507 return k %o A288507 k += 1 %o A288507 p, q = q, nextprime(q) # _Chai Wah Wu_, Jul 23 2017 %Y A288507 Cf. A001043, A001223, A046310, A251600. %K A288507 nonn,more %O A288507 3,1 %A A288507 _Zak Seidov_, Jun 10 2017