This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288515 #16 Mar 29 2019 15:51:20 %S A288515 1,1,0,1,2,0,1,4,4,0,1,6,12,8,0,1,8,24,32,14,0,1,10,40,80,76,24,0,1, %T A288515 12,60,160,234,168,40,0,1,14,84,280,552,624,352,64,0,1,16,112,448, %U A288515 1110,1712,1552,704,100,0,1,18,144,672,2004,3912,4896,3648,1356,154,0,1,20,180,960,3346,7896,12600,13120,8184,2532,232,0 %N A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k. %H A288515 Seiichi Manyama, <a href="/A288515/b288515.txt">Antidiagonals n = 0..139, flattened</a> %H A288515 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A288515 G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k. %F A288515 G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function. %F A288515 For asymptotics of column k see comment from _Vaclav Kotesovec_ in A001934. %e A288515 Square array begins: %e A288515 1, 1, 1, 1, 1, 1, ... %e A288515 0, 2, 4, 6, 8, 10, ... %e A288515 0, 4, 12, 24, 40, 60, ... %e A288515 0, 8, 32, 80, 160, 280, ... %e A288515 0, 14, 76, 234, 552, 1110, ... %e A288515 0, 24, 168, 624, 1712, 3913, ... %t A288515 Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %t A288515 Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %o A288515 (Julia) # JacobiTheta4 is defined in A002448. %o A288515 A288515Column(k, len) = JacobiTheta4(len, -k) %o A288515 for k in 0:8 A288515Column(k, 8) |> println end # _Peter Luschny_, Mar 12 2018 %Y A288515 Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values). %Y A288515 Rows n=0-2 give: A000012, A005843, A046092. %Y A288515 Main diagonal gives A270919. %Y A288515 Antidiagonal sums give A299108. %Y A288515 Cf. A122141, A286815. %K A288515 nonn,tabl %O A288515 0,5 %A A288515 _Ilya Gutkovskiy_, Jun 10 2017