This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288529 #18 Oct 21 2017 21:06:15 %S A288529 1,2,4,4,6,8,8,8,11,13,12,14,14,17,19,16,18,21,20,24,26,25,24,26,29, %T A288529 29,32,34,30,34,32,32,38,37,41,43,38,41,44,44,42,48,44,51,53,49,48,50, %U A288529 55,54,56,59,54,62,64,62,62,61,60,67,62,65,71,64,74,76,68,75,74,76,72,80,74,77,84,83,87,89,80,84,89,85 %N A288529 a(n) is the minimum number of rows from the table described in A286000 that are required to represent the partitions of n into consecutive parts. %C A288529 a(n) has the same definition related to the table A286001 which is another version of the table A286000. %C A288529 First differs from A288772 at a(11), which shares infinitely many terms. %F A288529 a(n) = A109814(n) + n - 1. %e A288529 Figures A..D show the evolution of the table of partitions into consecutive parts described in A286000, for n = 8..11: %e A288529 . --------------------------------------------------------------------- %e A288529 Figure: A B C D %e A288529 . --------------------------------------------------------------------- %e A288529 . n: 8 9 10 11 %e A288529 Row --------------------------------------------------------------------- %e A288529 1 | 1; | 1; | 1; | 1; | %e A288529 1 | 2; | 2; | 2; | 2; | %e A288529 3 | 3, 2; | 3, 2; | 3, 2; | 3, 2; | %e A288529 4 | 4, 1; | 4, 1; | 4, 1; | 4, 1; | %e A288529 5 | 5, 3; | 5, 3; | 5, 3; | 5, 3; | %e A288529 6 | 6, 2, 3;| 6, 2, 3; | 6, 2, 3; | 6, 2, 3; | %e A288529 7 | 7, 4, 2;| 7, 4, 2; | 7, 4, 2; | 7, 4, 2; | %e A288529 8 | [8], 3, 1;| 8, 3, 1; | 8, 3, 1; | 8, 3, 1; | %e A288529 9 | | [9],[5],[4]; | 9, 5, 4; | 9, 5, 4; | %e A288529 10 | | 10, [4],[3], 4;| [10], 4, 3, [4];| 10, 4, 3; 4;| %e A288529 11 | | 11, 6, [2], 3;| 11, 6, 2; [3];| [11],[6], 2, 3;| %e A288529 12 | | | 12, 5, 5, [2];| 12, [5], 5, 2;| %e A288529 13 | | | 13, 7, 4, [1];| | %e A288529 . --------------------------------------------------------------------- %e A288529 . a(n): 8 11 13 12 %e A288529 . --------------------------------------------------------------------- %e A288529 For n = 8 we need a table with at least 8 rows, so a(8) = 8. %e A288529 For n = 9 we need a table with at least 11 rows, so a(9) = 11. %e A288529 For n = 10 we need a table with at least 13 rows, so a(10) = 13. %e A288529 For n = 11 we need a table with at least 12 rows, so a(11) = 12. %Y A288529 Cf. A109814, A237593, A286000, A286001, A288772, A288773, A288774. %K A288529 nonn %O A288529 1,2 %A A288529 _Omar E. Pol_, Jun 19 2017