This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288532 #9 Jun 13 2017 09:18:53 %S A288532 1,2,3,22,5,23,7,23,32,25,11,223,13,27,35,222,17,232,19,225,37,211,23, %T A288532 233,52,213,33,227,29,235,31,25,311,217,57,2232,37,219,313,235,41,237, %U A288532 43,2211,325,223,47,2223,72,252,317,2213,53,233,511,237,319,229 %N A288532 Literal reading of the prime tower factorization of n. %C A288532 The prime tower factorization of a number is defined in A182318. %C A288532 The sequence is similar to A080670; however here we recursively factorize prime exponents. %C A288532 a(1) = 1 by convention. %C A288532 a(p) = p for any prime p. %C A288532 As for A080670, 13532385396179 is a composite fixed point. %H A288532 Rémy Sigrist, <a href="/A288532/b288532.txt">Table of n, a(n) for n = 1..10000</a> %H A288532 Rémy Sigrist, <a href="/A288532/a288532.pdf">Illustration of the first terms</a> %e A288532 See illustration of the first terms in Links section. %t A288532 Array[FromDigits@ Flatten@ Map[IntegerDigits, DeleteCases[#, 1] /. {} -> {1}] &@ Flatten@ FixedPoint[Map[If[PrimeQ@ Last@ # || Last@ # == 1, #, {First@ #, FactorInteger@ Last@ #}] &, #, {Depth@ # - 2}] &, FactorInteger@ #] &, 58] (* or *) %t A288532 Table[FromDigits@ Flatten@ Map[IntegerDigits, DeleteCases[ Flatten[ FactorInteger[n] //. {p_, e_} /; e > 1 :> {p, FactorInteger@ e}], 1] /. {} -> {1}], {n, 58}] (* _Michael De Vlieger_, Jun 11 2017 *) %o A288532 (PARI) a(n) = my (s="", f=factor(n)); for (i=1, #f~, s=concat(s,Str(f[i,1])); if (f[i,2]>1, s=concat(s,Str(a(f[i,2]))))); return (if(s=="", 1, eval(s))) %Y A288532 Cf. A080670, A182318. %K A288532 nonn,base %O A288532 1,2 %A A288532 _Rémy Sigrist_, Jun 11 2017