This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288574 #45 Apr 23 2025 04:50:25 %S A288574 0,0,0,0,1,2,4,4,6,7,9,10,12,15,17,16,19,19,23,25,26,26,28,33,32,35, %T A288574 43,39,41,45,45,48,54,55,52,60,59,56,75,67,67,81,74,76,92,83,85,100, %U A288574 96,81,106,103,91,121,108,98,131,120,116,143,133,129,151,144,124,163 %N A288574 Total number of distinct primes in all representations of 2*n+1 as a sum of 3 odd primes. %C A288574 That is, a representation 2n+1 = p+p+p counts as 1, as p+p+q counts as 2, and p+q+r counts as 3. If each representation is counted once, we simply get A007963. %H A288574 Indranil Ghosh (first 200 terms), Hugo Pfoertner, <a href="/A288574/b288574.txt">Table of n, a(n) for n = 0..10000</a> %p A288574 A288574 := proc(n) %p A288574 local a, i, j, k, p, q, r,pqr ; %p A288574 a := 0 ; %p A288574 for i from 2 do %p A288574 p := ithprime(i) ; %p A288574 for j from i do %p A288574 q := ithprime(j) ; %p A288574 for k from j do %p A288574 r := ithprime(k) ; %p A288574 if p+q+r = 2*n+1 then %p A288574 pqr := {p,q,r} ; %p A288574 a := a+nops(pqr) ; %p A288574 elif p+q+r > 2*n+1 then %p A288574 break; %p A288574 end if; %p A288574 end do: %p A288574 if p+2*q > 2*n+1 then %p A288574 break; %p A288574 end if; %p A288574 end do: %p A288574 if 3*p > 2*n+1 then %p A288574 break; %p A288574 end if; %p A288574 end do: %p A288574 return a; %p A288574 end proc: %p A288574 seq(A288574(n),n=0..80) ; # _R. J. Mathar_, Jun 29 2017 %t A288574 Table[x = 2 n + 1; max = PrimePi[x]; Total[Length /@ Tally /@ DeleteDuplicates[Sort /@ Select[Tuples[Range[2, max], 3], Prime[#[[1]]] + Prime[#[[2]]] + Prime[#[[3]]] == x &]]], {n, 0, 100}] (* _Robert Price_, Apr 22 2025 *) %o A288574 (PARI) a(n)={my(p,q,r,cnt);n=2*n+1; %o A288574 forprime(p=3,n\3,forprime(q=p,(n-p)\2, %o A288574 if(isprime(r=n-p-q), cnt+=if(p===q&&p==r,1,if(p==q||q==r,2,3)))));cnt} %o A288574 \\ _Franklin T. Adams-Watters_, Jun 28 2017 %o A288574 (Python) %o A288574 from sympy import primerange, isprime %o A288574 def a(n): %o A288574 n=2*n + 1 %o A288574 c=0 %o A288574 for p in primerange(3, n//3 + 1): %o A288574 for q in primerange(p, (n - p)//2 + 1): %o A288574 r=n - p - q %o A288574 if isprime(r): c+=1 if p==q and p==r else 2 if p==q or q==r else 3 %o A288574 return c %o A288574 print([a(n) for n in range(66)]) # _Indranil Ghosh_, Jun 29 2017 %Y A288574 A288573 appears to be an erroneous version of this sequence. %Y A288574 Cf. A007963, A054860, A087916. %K A288574 nonn %O A288574 0,6 %A A288574 _Franklin T. Adams-Watters_ and _R. J. Mathar_, Jun 28 2017