This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288604 #19 Jun 11 2019 10:56:27 %S A288604 0,51,1968,26214,195312,1007769,4035360,13421772,38742048,99999999, %T A288604 235794768,515978034,1060449936,2066104677,3844335936,6871947672, %U A288604 11858787648,19835929035,32268769776,51199999998,79428004656,120726921777,180115266144,264180754020 %N A288604 a(n) = (n^9 - n)/10. %H A288604 Seiichi Manyama, <a href="/A288604/b288604.txt">Table of n, a(n) for n = 1..10000</a> %H A288604 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (10,-45,120,-210,252,-210,120,-45,10,-1). %F A288604 a(n) = (n^9 - n)/10 = A196289(n)/10. %F A288604 G.f.: 3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10. - _Colin Barker_, Jun 11 2017 %t A288604 Table[(n^9-n)/10,{n,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,51,1968,26214,195312,1007769,4035360,13421772,38742048,99999999},30] (* _Harvey P. Dale_, Jun 11 2019 *) %o A288604 (PARI) concat(0, Vec(3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10 + O(x^30))) \\ _Colin Barker_, Jun 11 2017 %o A288604 (PARI) a(n)=(n^9-n)/10 \\ _Charles R Greathouse IV_, Jun 11 2017 %Y A288604 Cf. A164938, A196289. %K A288604 nonn,easy %O A288604 1,2 %A A288604 _Seiichi Manyama_, Jun 11 2017