A288606 E.g.f. expansion of f(x) around x = 1, where f(x) is the coefficient from the tetration asymptotic: x^^n = x^^inf - f(x)*log(x^^inf)^n + O(log(x^^inf)^(2*n)).
0, 1, 2, 6, 26, 120, 474, -3500, -169744, -4739628, -122528220, -3244006128, -89971866744, -2643601630488, -82449886989120, -2730313541889120, -95853665484598656, -3561107748108889344, -139703010646898138688, -5774800668716738596896, -250987866830927324395200
Offset: 0
Keywords
Examples
f(x) = (1/1!)*(x-1) + (2/2!)*(x-1)^2 + (6/3!)*(x-1)^3 + (26/4!)*(x-1)^4 + (120/5!)*(x-1)^5 + ...
Links
- MathOverflow, Discussion of a related sequence.
- Eric Weisstein's World of Mathematics, Power Tower.
- Wikipedia, Lambert W function.
- Wikipedia, Tetration.
Programs
-
Mathematica
a[n_] := n! SeriesCoefficient[(Exp[-ProductLog[-Log[x]]] - Power @@ Table[x, {n}])/(-ProductLog[-Log[x]])^n, {x, 1, n}]; Table[a[n], {n, 0, 20}]
Comments