cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288631 Numbers that are the sum of two nonzero square pyramidal numbers (A000330).

This page as a plain text file.
%I A288631 #10 Feb 16 2025 08:33:47
%S A288631 2,6,10,15,19,28,31,35,44,56,60,69,85,92,96,105,110,121,141,145,146,
%T A288631 154,170,182,195,205,209,218,231,234,259,280,286,290,295,299,315,340,
%U A288631 344,376,386,390,399,408,415,425,440,476,489,507,511,520,525,536,561,570,589,597,646,651,655,664,670,680
%N A288631 Numbers that are the sum of two nonzero square pyramidal numbers (A000330).
%H A288631 Robert Israel, <a href="/A288631/b288631.txt">Table of n, a(n) for n = 1..10000</a>
%H A288631 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SquarePyramidalNumber.html">Square Pyramidal Number</a>
%H A288631 <a href="/index/Ps#pyramidal_numbers">Index to sequences related to pyramidal numbers</a>
%p A288631 M:= 20: # to get all terms <= A000330(M)
%p A288631 sqp:= [seq(k*(k+1)*(2*k+1)/6, k=1..M)]:
%p A288631 sort(convert(select(`<=`, {seq(seq(sqp[i]+sqp[j], j=1..i),i=1..M-1)},sqp[M]),list)); # _Robert Israel_, Jun 12 2017
%t A288631 nmax = 700; f[x_] := Sum[x^(k (k + 1) (2 k + 1)/6), {k, 1, 20}]^2; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, nmax}]]
%Y A288631 Cf. A000330, A000404, A020756, A051533, A102795.
%K A288631 nonn
%O A288631 1,1
%A A288631 _Ilya Gutkovskiy_, Jun 12 2017