This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288638 #20 Oct 18 2018 15:56:00 %S A288638 1,1,1,1,1,1,1,1,2,1,1,1,3,4,1,1,1,4,10,8,1,1,1,5,19,33,16,1,1,1,6,31, %T A288638 92,106,32,1,1,1,7,46,201,421,333,64,1,1,1,8,64,376,1206,1830,1030, %U A288638 128,1,1,1,9,85,633,2841,6751,7687,3153,256,1 %N A288638 Number A(n,k) of n-digit biquanimous strings using digits {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A288638 A biquanimous string is a string whose digits can be split into two groups with equal sums. %H A288638 Alois P. Heinz, <a href="/A288638/b288638.txt">Antidiagonals n = 0..30, flattened</a> %e A288638 A(2,2) = 3: 00, 11, 22. %e A288638 A(3,2) = 10: 000, 011, 022, 101, 110, 112, 121, 202, 211, 220. %e A288638 A(3,3) = 19: 000, 011, 022, 033, 101, 110, 112, 121, 123, 132, 202, 211, 213, 220, 231, 303, 312, 321, 330. %e A288638 A(4,1) = 8: 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111. %e A288638 Square array A(n,k) begins: %e A288638 1, 1, 1, 1, 1, 1, 1, 1, ... %e A288638 1, 1, 1, 1, 1, 1, 1, 1, ... %e A288638 1, 2, 3, 4, 5, 6, 7, 8, ... %e A288638 1, 4, 10, 19, 31, 46, 64, 85, ... %e A288638 1, 8, 33, 92, 201, 376, 633, 988, ... %e A288638 1, 16, 106, 421, 1206, 2841, 5801, 10696, ... %e A288638 1, 32, 333, 1830, 6751, 19718, 48245, 104676, ... %e A288638 1, 64, 1030, 7687, 36051, 128535, 372345, 939863, ... %p A288638 b:= proc(n, k, s) option remember; %p A288638 `if`(n=0, `if`(s={}, 0, 1), add(b(n-1, k, select(y-> %p A288638 y<=(n-1)*k, map(x-> [abs(x-i), x+i][], s))), i=0..k)) %p A288638 end: %p A288638 A:= (n, k)-> b(n, k, {0}): %p A288638 seq(seq(A(n, d-n), n=0..d), d=0..12); %t A288638 b[n_, k_, s_] := b[n, k, s] = If[n == 0, If[s == {}, 0, 1], Sum[b[n-1, k, Select[Flatten[{Abs[#-i], #+i}& /@ s], # <= (n-1)*k&]], {i, 0, k}]]; %t A288638 A[n_, k_] := b[n, k, {0}]; %t A288638 Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Jun 08 2018, from Maple *) %Y A288638 Columns k=0-9 give: A000012, A011782, A053156, A288687, A288688, A288689, A288690, A288691, A288692, A065024. %Y A288638 Rows n=0+1,2-3 give: A000012, A000027(k+1), A005448(k+1). %Y A288638 Main diagonal gives A288693. %Y A288638 Cf. A064544, A064914. %K A288638 nonn,tabl %O A288638 0,9 %A A288638 _Alois P. Heinz_, Jun 12 2017