cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288641 Define the sequence {b_n(k)} as the solutions of the recursion (k+1) * b_n(k+1) = b_n(k) * (b_n(k)^(n-1) + k) with b_n(0) = 1. a(n) is the least prime p where p * b_n(p) is not 0 mod p.

Table of values

n a(n)
2 43
3 89
4 97
5 251
6 19
7 239
8 37
9 79
10 83
11 239
12 31
13 431
14 19
15 79
16 23
17 827
18 43
19 173
20 31
21 103
22 179
23 73
24 19
25 431
26 193
27 101
28 53
29 811
30 47
31 1427
32 19
33 251
34 29
35 311
36 137
37 71
38 23
39 499
40 43
41 47
42 19
43 419
44 31
45 191
46 83
47 337
48 59
49 1559
50 19
51 127
52 109
53 163
54 67
55 353
56 83
57 191
58 83
59 107

List of values

[43, 89, 97, 251, 19, 239, 37, 79, 83, 239, 31, 431, 19, 79, 23, 827, 43, 173, 31, 103, 179, 73, 19, 431, 193, 101, 53, 811, 47, 1427, 19, 251, 29, 311, 137, 71, 23, 499, 43, 47, 19, 419, 31, 191, 83, 337, 59, 1559, 19, 127, 109, 163, 67, 353, 83, 191, 83, 107]