cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288723 First sequence of a Kolakoski 3-Ouroboros, i.e., sequence of 1s, 2s and 3s that begins a chain of three distinct sequences where successive run-length encodings produce seq(1) -> seq(2) -> seq(3) -> seq(1).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 1, 2, 3, 3, 1, 1, 2, 2, 2, 3, 3, 3, 1, 2, 3, 3, 1, 1, 2, 2, 3, 3, 3, 1, 2, 3, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 3, 3, 1, 1
Offset: 1

Views

Author

Anthony Sand, Jun 14 2017

Keywords

Comments

The Kolakoski sequence, A000002, is its own run-length encoding: if you write down the lengths of the runs of 1 and 2, the same sequence reappears, i.e., A000002 = runlength(A000002). Next, runlength(A025142) = A025143 and runlength(A025143) = A025142. The run-lengths of the sequence above yield a second sequence whose run-lengths yield a third sequence whose run-lengths yield the original sequence:
seq(1) = 1,1,2,2,3,3,1,1,1,2,3,1,1,2,2,3,3,3,1,1,1,2,2,2,3,1,2,3,3,1,1,1,2,3,3,...
seq(2) = 2,2,2,3,1,1,2,2,3,3,3,1,1,1,2,3,1,2,2,3,3,1,1,2,2,2,3,1,1,2,2,2,3,3,3,...
seq(3) = 3,1,2,2,3,3,1,1,1,2,2,2,3,1,2,3,3,1,1,1,2,3,1,1,2,2,3,3,3,1,1,1,2,2,2,...
It seems possible to create arbitrarily long chains of distinct integer sequences, seq(1), seq(2)..seq(n), in which runlength(seq(i)) = seq(i+1) for (i=1,n-1) and runlength(seq(n)) = seq(1). When n=5, one possible chain is:
seq(1) = 1,1,2,2,3,3,4,4,4,5,5,5,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,5,...
seq(2) = 2,2,2,3,3,3,4,4,4,5,5,5,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,5,...
seq(3) = 3,3,3,3,4,4,4,4,5,5,5,5,1,1,1,1,2,2,2,2,3,3,3,3,3,4,5,1,1,2,2,3,3,3,...
seq(4) = 4,4,4,4,4,5,1,1,2,2,3,3,3,4,4,4,5,5,5,5,1,1,1,1,2,2,2,2,3,3,3,3,3,...
seq(5) = 5,1,2,2,3,3,4,4,4,5,5,5,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,4,...
When n=10, one possible chain begins and ends:
seq(1) = 1,1,2,2,3,3,4,4,4,5,5,5,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,10,...
[...]
seq(10) = 10,1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,9,10,10,10,10,10,...
These chains might be called Kolakoski n-Ouroboroi, after the legendary serpent Ouroboros that bites its own tail. This sequence, A288723, is the first of one possible 3-Ouroboros, but any set of three distinct integers can seed a 3-Ouroboros. If the seed is (2,3,5), the 3-Ouroboros is:
seq(1) = 2,2,2,3,3,3,5,5,5,2,2,2,3,3,3,5,5,5,5,5,2,2,2,2,2,3,3,3,3,3,5,5,5,5,5,...
seq(2) = 3,3,3,3,3,5,5,5,5,5,2,2,3,3,5,5,5,2,2,2,3,3,3,3,3,5,5,5,5,5,2,2,2,2,2,...
seq(3) = 5,5,2,2,3,3,5,5,5,2,2,2,3,3,3,5,5,5,5,5,2,2,2,2,2,3,3,3,3,3,5,5,2,2,3,3,...
For n > 3, the integer set can repeat integers if the same integer does not occur consecutively or at the beginning and end of the set. If the seed is (1,2,1,3), the 4-Ouroboros is:
seq(1) = 1,1,2,1,1,1,3,1,2,1,1,3,1,1,1,2,2,2,1,3,1,1,2,1,3,1,1,1,2,2,2,1,1,1,...
seq(2) = 2,1,3,1,1,1,2,1,3,3,1,1,2,1,1,1,3,3,3,1,1,1,2,1,1,3,3,1,2,1,1,1,3,3,3,...
seq(3) = 1,1,1,3,1,1,2,2,1,3,3,3,1,2,2,1,1,3,3,1,2,2,2,1,1,1,3,1,1,2,1,3,1,1,1,...
seq(4) = 3,1,2,2,1,3,1,2,2,2,1,3,3,1,2,1,1,1,3,1,2,1,1,3,3,1,1,2,1,1,1,3,1,2,2,...
The existence of Kolakoski p-Ouroboros sequences for any positive integer p is proved in my paper 'What Is the Long Range Order in the Kolakoski Sequence?' from 1997. - Michel Dekking, Feb 05 2018

Examples

			Write down the run-lengths of the sequence, or the lengths of the runs of 1s, 2s and 3s. This yields a second and different sequence of 1s, 2s and 3s, A288724. The run-lengths of this second sequence yield a third and different sequence, A288725. The run-lengths of this third sequence yield the original sequence. For example, bracket the runs of distinct integers, then replace the original digits with the run-lengths to create the second sequence:
(1,1), (2,2), (3,3), (1,1,1), (2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2,2,2), (3), (1), (2), (3,3), (1,1,1), (2), (3,3), (1,1), (2,2,2), ... -> 2, 2, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 3, 1, 2, 2, 3, ...
Apply the same process to the second sequence and the third sequence appears:
(2,2,2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2), (3), (1), (2,2), (3,3), (1,1), (2,2,2), (3), (1,1), (2,2,2), (3,3,3), (1), (2), (3), ... -> 3, 1, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 1, ...
Apply the same process to the third sequence and the original sequence reappears:
(3), (1), (2,2), (3,3), (1,1,1), (2,2,2), (3), (1), (2), (3,3), (1,1,1), (2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2,2,2), (3), (1), ... -> 1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, ...
		

References

  • F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.

Crossrefs

Cf. A000002, A025142, A025143. The second and third sequences in this 3-Ouroboros are A288724 and A288725.