cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288725 Third sequence of a Kolakoski 3-Ouroboros, i.e., sequence of 1s, 2s and 3s that is third in a chain of three distinct sequences where successive run-length encodings produce seq(1) -> seq(2) -> seq(3) -> seq(1).

Original entry on oeis.org

3, 1, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 2, 2, 3, 3, 3, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 3, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 1, 2, 2
Offset: 1

Views

Author

Anthony Sand, Jun 14 2017

Keywords

Comments

See comments at A288723.

Examples

			Write down the run-lengths of the sequence A288723, or the lengths of the runs of 1s, 2s and 3s. This yields a second and different sequence of 1s, 2s and 3s, A288724. The run-lengths of this second sequence yield a third and different sequence, A288725 (as above). The run-lengths of this third sequence yield the original sequence. For example, bracket the runs of distinct integers, then replace the original digits with the run-lengths to create the second sequence:
(1,1), (2,2), (3,3), (1,1,1), (2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2,2,2), (3), (1), (2), (3,3), (1,1,1), (2), (3,3), (1,1), (2,2,2), ... -> 2, 2, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, 1, 2, 3, 1, 2, 2, 3, ...
Apply the same process to the second sequence and the third sequence appears:
(2,2,2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2), (3), (1), (2,2), (3,3), (1,1), (2,2,2), (3), (1,1), (2,2,2), (3,3,3), (1), (2), (3), ... -> 3, 1, 2, 2, 3, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 3, 3, 1, 1, 1, ...
Apply the same process to the third sequence and the original sequence reappears:
(3), (1), (2,2), (3,3), (1,1,1), (2,2,2), (3), (1), (2), (3,3), (1,1,1), (2), (3), (1,1), (2,2), (3,3,3), (1,1,1), (2,2,2), (3), (1), ... -> 1, 1, 2, 2, 3, 3, 1, 1, 1, 2, 3, 1, 1, 2, 2, 3, 3, 3, 1, 1, ...
		

Crossrefs

Cf. A000002, A025142, A025143. A288723 and A288724 are the first and second sequences in this 3-Ouroboros.