This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288728 #23 Feb 16 2025 08:33:48 %S A288728 1,1,3,3,7,8,18,19,47,43,102,116,238,240,553,554,1185,1259,2578,2607, %T A288728 5873,5526,11834,12601,24692,24390,53735,52534,107445,107330,218727, %U A288728 215607,461367,427778,891039,910294,1804606,1706828,3695418,3411513,7136850,6892950 %N A288728 Number of sum-free sets that can be created by adding n to all sum-free sets [1..n-1]. %C A288728 Using the standard definition of sum-free set, this is simply the difference of successive terms in A007865. %C A288728 Number of subsets of {1..n} containing n but not containing the sum of any other two elements (repeats allowed). Also the number of sum-free sets (A007865) with maximum n. - _Gus Wiseman_, Aug 12 2023 %H A288728 Fausto A. C. Cariboni, <a href="/A288728/b288728.txt">Table of n, a(n) for n = 1..88</a> %H A288728 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Sum-FreeSet.html">Sum-Free Set</a> %F A288728 a(n) = A007865(n) - A007865(n-1). %e A288728 1 can be added to {}; %e A288728 2 can be added to {} but not {1}; %e A288728 3 can be added to {},{1},{2}; %e A288728 4 can be added to {},{1},{3} but not {2},{1,3},{2,3}. %e A288728 From _Gus Wiseman_, Aug 12 2023: (Start) %e A288728 The a(1) = 1 through a(7) = 18 sum-free sets with maximum n: %e A288728 {1} {2} {3} {4} {5} {6} {7} %e A288728 {1,3} {1,4} {1,5} {1,6} {1,7} %e A288728 {2,3} {3,4} {2,5} {2,6} {2,7} %e A288728 {3,5} {4,6} {3,7} %e A288728 {4,5} {5,6} {4,7} %e A288728 {1,3,5} {1,4,6} {5,7} %e A288728 {3,4,5} {2,5,6} {6,7} %e A288728 {4,5,6} {1,3,7} %e A288728 {1,4,7} %e A288728 {1,5,7} %e A288728 {2,3,7} %e A288728 {2,6,7} %e A288728 {3,5,7} %e A288728 {4,5,7} %e A288728 {4,6,7} %e A288728 {5,6,7} %e A288728 {1,3,5,7} %e A288728 {4,5,6,7} %e A288728 (End) %t A288728 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Tuples[#,2]]=={}&]],{n,10}] (* _Gus Wiseman_, Aug 12 2023 *) %Y A288728 Cf. A007865. %Y A288728 For non-binary sum-free subsets of {1..n} we have A237667. %Y A288728 For sum-free partitions we have A364345, without re-using parts A236912. %Y A288728 Without re-using parts we have A364755, diffs of A085489 (non-bin A151897). %Y A288728 The complement without re-using parts is A364756, differences of A088809. %Y A288728 Cf. A002865, A093971, A237113, A237668, A326083, A364347, A364348, A364534. %K A288728 nonn %O A288728 1,3 %A A288728 _Ben Burns_, Jun 14 2017