This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288782 #24 Jun 22 2025 15:18:04 %S A288782 10,34,100,208,238,394,1000,1680,2898,3994,10000,14938,16198,22348, %T A288782 22648,29830,31600,39994,100000,109994,137694,149380,316048,333630, %U A288782 380720,399994,1000000,1010610,1079440,1306120,1318244,1396694,1409228,1460458,1738920,1768810,1826150 %N A288782 Integers k that have the property that there exists an integer x with n+1 digits, such that 1 <= k/x < 2 and k/x = 1 + (x-10^n)/(10^n-1), i.e., the same digits appear in the denominator and in the recurring decimal. %C A288782 The values 399..994 all seem to appear. %H A288782 Giovanni Resta, <a href="/A288782/b288782.txt">Table of n, a(n) for n = 1..10000</a> %t A288782 Union @@ Reap[ Do[Sow[k /. List@ToRules@ Reduce[k/x == 1 + (x - 10^n)/(10^n - 1) && 10^n <= x < 10^(n + 1) && x <= k < 2 x, {k, x}, Integers]], {n, 6}]][[2, 1]] (* _Giovanni Resta_, Jun 30 2017 *) %o A288782 (Python) %o A288782 from math import sqrt %o A288782 def is_square(n): %o A288782 root = int(sqrt(n)) %o A288782 return root*root == n %o A288782 def find_sols(length): %o A288782 count = 0 %o A288782 k=10**length %o A288782 for n in range(k,4*k-2): %o A288782 discr= (2*k-1)*(2*k-1) - 4*(k*(k-1)-(k-1)*n) %o A288782 if is_square(discr): %o A288782 count+=1 %o A288782 b=(-(2*k-1)+sqrt(discr))/2 %o A288782 print(n, k+b, n/(k+b)) %o A288782 return count %o A288782 for i in range(8): %o A288782 print(find_sols(i)) %Y A288782 Cf. A285273, A288781 (denominators). %K A288782 nonn,base %O A288782 1,1 %A A288782 _James Kilfiger_, Jun 15 2017 %E A288782 Definition corrected by _Giovanni Resta_, Jun 30 2017