This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288787 #16 Jun 26 2022 08:21:19 %S A288787 1,7,50,345,2392,16955,123707,932010,7260709,58509323,487593202, %T A288787 4199841037,37361858716,342989895895,3246458915947,31653980371254, %U A288787 317654338317380,3278058775976704,34757921507150964,378372365291381716,4225533329681577846,48375204740642752562 %N A288787 Number of blocks of size >= five in all set partitions of n. %H A288787 Alois P. Heinz, <a href="/A288787/b288787.txt">Table of n, a(n) for n = 5..575</a> %H A288787 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A288787 a(n) = Bell(n+1) - Sum_{j=0..4} binomial(n,j) * Bell(n-j). %F A288787 a(n) = Sum_{j=0..n-5} binomial(n,j) * Bell(j). %F A288787 E.g.f.: (exp(x) - Sum_{k=0..4} x^k/k!) * exp(exp(x) - 1). - _Ilya Gutkovskiy_, Jun 26 2022 %p A288787 b:= proc(n) option remember; `if`(n=0, 1, add( %p A288787 b(n-j)*binomial(n-1, j-1), j=1..n)) %p A288787 end: %p A288787 g:= proc(n, k) option remember; `if`(n<k, 0, %p A288787 g(n, k+1) +binomial(n, k)*b(n-k)) %p A288787 end: %p A288787 a:= n-> g(n, 5): %p A288787 seq(a(n), n=5..30); %t A288787 b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]]; %t A288787 g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]]; %t A288787 a[n_] := g[n, 5]; %t A288787 Table[a[n], {n, 5, 30}] (* _Jean-François Alcover_, May 28 2018, from Maple *) %Y A288787 Column k=5 of A283424. %Y A288787 Cf. A000110. %K A288787 nonn %O A288787 5,2 %A A288787 _Alois P. Heinz_, Jun 15 2017