This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288788 #13 Jun 26 2022 08:21:53 %S A288788 1,8,65,502,3851,29921,237426,1932529,16173029,139320277,1235847277, %T A288788 11288120480,106132359679,1026681599731,10212591089574, %U A288788 104393925768077,1095895294558168,11806719056706773,130457490607638988,1477428802636263486,17138268233851671782 %N A288788 Number of blocks of size >= 6 in all set partitions of n. %H A288788 Alois P. Heinz, <a href="/A288788/b288788.txt">Table of n, a(n) for n = 6..575</a> %H A288788 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A288788 a(n) = Bell(n+1) - Sum_{j=0..5} binomial(n,j) * Bell(n-j). %F A288788 a(n) = Sum_{j=0..n-6} binomial(n,j) * Bell(j). %F A288788 E.g.f.: (exp(x) - Sum_{k=0..5} x^k/k!) * exp(exp(x) - 1). - _Ilya Gutkovskiy_, Jun 26 2022 %p A288788 b:= proc(n) option remember; `if`(n=0, 1, add( %p A288788 b(n-j)*binomial(n-1, j-1), j=1..n)) %p A288788 end: %p A288788 g:= proc(n, k) option remember; `if`(n<k, 0, %p A288788 g(n, k+1) +binomial(n, k)*b(n-k)) %p A288788 end: %p A288788 a:= n-> g(n, 6): %p A288788 seq(a(n), n=6..30); %t A288788 b[n_] := b[n] = If[n == 0, 1, Sum[b[n - j]*Binomial[n-1, j-1], {j, 1, n}]]; %t A288788 g[n_, k_] := g[n, k] = If[n < k, 0, g[n, k + 1] + Binomial[n, k]*b[n - k]]; %t A288788 a[n_] := g[n, 6]; %t A288788 Table[a[n], {n, 6, 30}] (* _Jean-François Alcover_, May 28 2018, from Maple *) %Y A288788 Column k=6 of A283424. %Y A288788 Cf. A000110. %K A288788 nonn %O A288788 6,2 %A A288788 _Alois P. Heinz_, Jun 15 2017