This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288840 #42 Mar 01 2018 02:45:43 %S A288840 1,984,574488,307081056,164453203992,88062998451984,47157008244215904, %T A288840 25252184242734325440,13522333949728177520664, %U A288840 7241096993206804017918456,3877547016709833498690361488,2076394071353012138642420600352 %N A288840 Coefficients in expansion of E_8/E_6. %D A288840 Ken Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, CBMS Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence, RI, 2004. %H A288840 Seiichi Manyama, <a href="/A288840/b288840.txt">Table of n, a(n) for n = 0..366</a> %F A288840 From _Seiichi Manyama_, Jun 27 2017: (Start) %F A288840 Let j_0 = 1 and j_1 = j - 744. Define j_m by j_m = j1 | T_0(m), where T_0(m) = mT_{m, 0} is the normalized m-th weight zero Hecke operator. a(n) = j_n(i). %F A288840 G.f.: Sum_{n >= 0} j_n(i)*q^n. (End) %F A288840 a(n) ~ 2 * exp(2*Pi*n). - _Vaclav Kotesovec_, Jun 28 2017 %F A288840 G.f.: -q*j'/(j-1728) where j is the elliptic modular invariant (A000521). - _Seiichi Manyama_, Jul 12 2017 %e A288840 G.f.: 1 + 984*q + 574488*q^2 + 307081056*q^3 + 164453203992*q^4 + 88062998451984*q^5 + 47157008244215904*q^6 + ... %e A288840 From _Seiichi Manyama_, Jun 27 2017: (Start) %e A288840 a(0) = j_0(i) = 1,_ %e A288840 a(1) = j_1(i) = -744 + 1728^1 = 984, %e A288840 a(2) = j_2(i) = 159768 - 1488*1728^1 + 1728^2 = 574488. (End) %t A288840 nmax = 20; CoefficientList[Series[(1 + 480*Sum[DivisorSigma[7, k]*x^k, {k, 1, nmax}])/(1 - 504*Sum[DivisorSigma[5, k]*x^k, {k, 1, nmax}]), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jun 28 2017 *) %t A288840 terms = 12; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[Ei[8]/Ei[6] + O[x]^terms, x] (* _Jean-François Alcover_, Mar 01 2018 *) %Y A288840 Cf. A013973 (E_6), A008410 (E_8). %Y A288840 Cf. A288261 (E_6/E_4). %Y A288840 Cf. A000521 (j), A035230 (-q*j'), A289141, A289417. %K A288840 nonn %O A288840 0,2 %A A288840 _Seiichi Manyama_, Jun 17 2017