cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288842 Triangle (sans apex) of coefficients of terms of the form (eM_1)^j*(eM_2)^k re construction of triangle A287768.

This page as a plain text file.
%I A288842 #23 Jun 30 2019 04:41:25
%S A288842 1,2,3,9,6,9,36,45,18,27,135,243,189,54,81,486,1134,1296,729,162,243,
%T A288842 1701,4860,7290,6075,2673,486,729,5832,19683,36450,40095,26244,9477,
%U A288842 1458,2187,19683,76545,168399,229635,199017,107163,32805,4374,6561,65610,288684,734832,1194102,1285956,918540,419904,111537,13122
%N A288842 Triangle (sans apex) of coefficients of terms of the form (eM_1)^j*(eM_2)^k re construction of triangle A287768.
%H A288842 G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, <a href="http://arxiv.org/abs/1706.08381">Universal Peculiar Linear Mean Relationships in All Polynomials</a>, Table GW.n=3, p.22, arXiv:1706.08381 [math.GM], 2017.
%F A288842 T(n+1,k+1) = 3*T(n,k) + 3*T(n,k+1).
%e A288842 Triangle begins:
%e A288842   1,  2;
%e A288842   3,  9,  6;
%e A288842   9, 36, 45, 18;
%t A288842 T[1, 1] = 1; T[1, 2] = 2;
%t A288842 T[n_, k_] /; 1 <= k <= n+1 := T[n, k] = 3 T[n-1, k-1] + 3 T[n-1, k];
%t A288842 T[_, _] = 0;
%t A288842 Table[T[n, k], {n, 1, 9}, {k, 1, n+1}] // Flatten (* _Jean-François Alcover_, Nov 16 2018 *)
%Y A288842 Columns are: A000244, A288834, A288835, A288836, A288838, etc.
%Y A288842 Cf. A287768.
%K A288842 nonn,tabf
%O A288842 1,2
%A A288842 _Gregory Gerard Wojnar_, Jun 17 2017