This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288853 #40 Jun 03 2024 18:26:12 %S A288853 1,1,1,1,3,6,1,7,42,168,1,15,210,2520,20160,1,31,930,26040,624960, %T A288853 9999360,1,63,3906,234360,13124160,629959680,20158709760,1,127,16002, %U A288853 1984248,238109760,26668293120,2560156139520,163849992929280,1,255,64770,16322040,4047865920,971487820800,217613271859200,41781748196966400,5348063769211699200 %N A288853 Triangle read by rows: T(n,k) is the number of surjective linear mappings from an n-dimensional vector space over F_2 onto a k-dimensional vector space, n>=0, 0<=k<=n. %C A288853 The (q = 2) analog of A008279. %C A288853 A022166(m,k)*T(n,k) is the number of m X n matrices over F_2 that have rank k. %C A288853 a(n) is the number of n X n matrices over F_2 in Green's R class containing A where rank(A) = k. - _Geoffrey Critzer_, Oct 05 2022 %H A288853 Geoffrey Critzer, <a href="https://esirc.emporia.edu/handle/123456789/3595">Combinatorics of Vector Spaces over Finite Fields</a>, Master's thesis, Emporia State University, 2018. %H A288853 Jeremy L. Martin, <a href="https://jlmartin.ku.edu/LectureNotes.pdf">Lecture Notes on Algebraic Combinatorics</a>, 2010-2023, Example 2.3.6. %H A288853 Kent E. Morrison, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Morrison/morrison37.html">Integer Sequences and Matrices Over Finite Fields</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. %H A288853 Wikipedia, <a href="http://en.wikipedia.org/wiki/Green's_relations">Green's relations</a>. %F A288853 T(n,k) = Product_{j=0..k-1} (2^n - 2^j). %F A288853 T(n,k) = A002884(k)*A022166(n,k). %F A288853 Let g_m(x) = Sum_{n>=0} (2^m*x)^n/A005329(n) and e(x) = Sum_{n>=0} x^n/A005329(n). Then Sum_{k>=0} T(n,k)*x^k/A005329(k) = g_n(x)/e(x). - _Geoffrey Critzer_, Jun 01 2024 %e A288853 1; %e A288853 1, 1; %e A288853 1, 3, 6; %e A288853 1, 7, 42, 168; %e A288853 1, 15, 210, 2520, 20160; %e A288853 1, 31, 930, 26040, 624960, 9999360; %e A288853 ... %t A288853 Table[Table[Product[q^n - q^i, {i, 0, k - 1}] /. q -> 2, {k, 0, n}], {n, 0,8}] // Grid %Y A288853 Columns k=0-10 give: A000012, A000225, 6*A006095, 168*A006096, 20160*A006097, 9999360*A006110, 20158709760*A022189, 163849992929280*A022190, 5348063769211699200*A022191, 699612310033197642547200*A022192, 366440137299948128422802227200*A022193. %Y A288853 Main diagonal gives A002884. %Y A288853 Cf. A022166. %K A288853 nonn,tabl %O A288853 0,5 %A A288853 _Geoffrey Critzer_, Jun 18 2017