This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288871 #7 Jul 10 2017 04:18:30 %S A288871 5,9,14,15,22,36,25,34,52,88,43,54,76,120,208,77,90,116,168,272,480, %T A288871 143,158,188,248,368,608,1088,273,290,324,392,528,800,1344,2432,531, %U A288871 550,588,664,816,1120,1728,2944,5376,1045,1066,1108,1192,1360,1696,2368,3712,6400,11776 %N A288871 Triangle t needed for the e.g.f.s of the column sequences of A288870 with leading zeros. %C A288871 See the triangle T = A288870. The e.g.f. of the sequence of column k (k >= 0) without the leading k zeros is E(k, x) = (2*k+1)*exp(2*x) + exp(x). In order to get the e.g.f. for the column k sequence with the leading k zeros one has to integrate k times for k >=1; but this will first generate unwanted fractional numbers for the first k entries (when no integration constants are taken into account). These rational polynomials of degree k to be subtracted are S(k, x) = 2^(-k)* Sum_{m=1..k} t(k,m)*x^(m-1)/(m-1)! if k >=1. %F A288871 t(k, m) = 2^k + k*2^m + 2^(m-1), k >= m >= 1, otherwise 0. %F A288871 O.g.f. column m: G(m, x) =x*(2*x)^(m-1)*(3 - 5*x + 2*(1 - 3*x + 2*x^2)*m)/((1-x)^2*(1-2*x)). %F A288871 O.g.f. G(m, x) = 1/(1-2*x) + 2^m*x/(1-x)^2 + 2^(m-1)/(1-x) - Subt(m ,x), with %F A288871 Subt(m, x) = Sum_{k=0..m-1} A288870(m-1, k)*(2*x)^k. %e A288871 The triangle t begins: %e A288871 k\m 1 2 3 4 5 6 7 8 9 10 ... %e A288871 1: 5 %e A288871 2: 9 14 %e A288871 3: 15 22 36 %e A288871 4: 25 34 52 88 %e A288871 5: 43 54 76 120 208 %e A288871 6: 77 90 116 168 272 480 %e A288871 7: 143 158 188 248 368 608 108 %e A288871 8: 273 290 324 392 528 800 1344 2432 %e A288871 9: 531 550 588 664 816 1120 1728 2944 5376 %e A288871 10: 1045 1066 1108 1192 1360 1696 2368 3712 6400 11776 %e A288871 ... %e A288871 k = 1: E(1, x) = 3*exp(2*x) + exp(x) generates exponentially: 4, 7, 13, 25, 49, ..., the column k = 1 of T = A288870 without leading zero. Integration gives (without integration constant) (3/2)*exp(2*x) + exp(x), generating 5/2, 4, 7, 13, 25, 49, ..., therefore 5/2 = 2^(-1)* t(1,1)*x^(1-1)/(1-1)!= 2^(-1)*5*x^0 = 5/2. %e A288871 Column o.g.f. for m=2: G(2, x) = 1/(1-2*x) + 4*x/(1-x)^2 + 2/(1-x) - (3 + 2^1*4*x) = 2*x^2*(7-17*x+8*x^2)/((1 - 2*x)*( 1 - x)^2). %Y A288871 Cf. A288870. %K A288871 nonn,tabl,easy %O A288871 1,1 %A A288871 _Wolfdieter Lang_, Jun 21 2017