This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288874 #27 Mar 13 2025 16:07:47 %S A288874 1,0,1,0,2,1,0,6,8,1,0,24,58,22,1,0,120,444,328,52,1,0,720,3708,4400, %T A288874 1452,114,1,0,5040,33984,58140,32120,5610,240,1,0,40320,341136,785304, %U A288874 644020,195800,19950,494,1,0,362880,3733920,11026296,12440064,5765500,1062500,67260,1004,1,0,3628800,44339040,162186912,238904904,155357384,44765000,5326160,218848,2026,1 %N A288874 Row reversed version of triangle A201637 (second-order Eulerian triangle). %C A288874 See A201637, and also A008517 (offset 1 for rows and columns). %C A288874 The row polynomials of this triangle P(n, x) = Sum_{m=0..n} T(n, m)*x^m appear as numerator polynomials in the o.g.f.s for the diagonal sequences of triangle A132393 (|Stirling1| with offset 0 for rows and columns). See the comment and the P. Bala link there. %C A288874 For similar triangles see also A112007 and A163936. %H A288874 Seiichi Manyama, <a href="/A288874/b288874.txt">Rows n = 0..139, flattened</a> %H A288874 Andrew Elvey Price, Alan D. Sokal, <a href="https://arxiv.org/abs/2001.01468">Phylogenetic trees, augmented perfect matchings, and a Thron-type continued fraction (T-fraction) for the Ward polynomials</a>, arXiv:2001.01468 [math.CO], 2020. %H A288874 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eulerian_number#Eulerian_numbers_of_the_second_kind">Eulerian numbers of the second kind</a> %F A288874 T(n, m) = A201637(n, n-m), n >= m >= 0. %F A288874 Recurrence: T(0, 0) = 1, T(n, -1) = 0, T(n, m) = 0 if n < m, (n-m+1)*T(n-1, m-1) + (n-1+m)*T(n-1, m), n >= 1, m = 0..n; from the A008517 recurrence. %F A288874 T(0, 0) = 1, T(n, m) = Sum_{p = 0..m-1} (-1)^(n-p)*binomial(2*n+1, p)*A132393(n+m-p, m-p), n >= 1, m = 0..n; from a A008517 program. %F A288874 T(n, k) = n! * [t^k][x^n] (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1) where after expansion W(-exp(-1/t)/t) is substituted by (-1/t). [Inspired by a formula of _Shamil Shakirov_ in A008517.] - _Peter Luschny_, Mar 13 2025 %e A288874 The triangle T(n, m) begins: %e A288874 n\m 0 1 2 3 4 5 6 7 8 9 ... %e A288874 0: 1 %e A288874 1: 0 1 %e A288874 2: 0 2 1 %e A288874 3: 0 6 8 1 %e A288874 4: 0 24 58 22 1 %e A288874 5: 0 120 444 328 52 1 %e A288874 6: 0 720 3708 4400 1452 114 1 %e A288874 7: 0 5040 33984 58140 32120 5610 240 1 %e A288874 8: 0 40320 341136 785304 644020 195800 19950 494 1 %e A288874 9: 0 362880 3733920 11026296 12440064 5765500 1062500 67260 1004 1 %e A288874 ... %p A288874 T:= (n, k)-> combinat[eulerian2](n, n-k): %p A288874 seq(seq(T(n, k), k=0..n), n=0..12); # _Alois P. Heinz_, Jul 26 2017 %p A288874 # Using the e.g.f: %p A288874 alias(W = LambertW): len := 10: %p A288874 egf := (t - 1)*(1/(W(-exp(((t - 1)^2*x - 1)/t)/t) + 1) - 1): %p A288874 ser := simplify(subs(W(-exp(-1/t)/t) = (-1/t), series(egf, x, len+1))): %p A288874 seq(seq(n!*coeff(coeff(ser, x, n), t, k), k = 0..n), n = 0..len); # _Peter Luschny_, Mar 13 2025 %t A288874 Table[Boole[n == 0] + Sum[(-1)^(n + k) * Binomial[2 n + 1, k] StirlingS1[2 n - m - k, n - m - k], {k, 0, n - m - 1}], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* _Michael De Vlieger_, Jul 21 2017, after _Jean-François Alcover_ at A201637 *) %Y A288874 Cf. A201637, A008517, A112007, A163936. %Y A288874 Columns m = 0..5: A000007, A000142, A002538, A002539, A112008, A112485. %Y A288874 Diagonals d = 0..3: A000012, A005803, A004301, A006260. %Y A288874 T(2n,n) gives A290306. %K A288874 nonn,easy,tabl %O A288874 0,5 %A A288874 _Wolfdieter Lang_, Jul 20 2017