cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288875 Triangle read by rows. The rows give the coefficients of the numerator polynomials for the o.g.f.s of the diagonal sequences of triangle A028338.

This page as a plain text file.
%I A288875 #38 Dec 20 2023 08:06:35
%S A288875 1,1,1,3,8,1,15,71,33,1,105,744,718,112,1,945,9129,14542,5270,353,1,
%T A288875 10395,129072,300291,191384,33057,1080,1,135135,2071215,6524739,
%U A288875 6338915,2033885,190125,3265,1,2027025,37237680,150895836,204889344,103829590,18990320,1038780,9824,1
%N A288875 Triangle read by rows. The rows give the coefficients of the  numerator polynomials for the o.g.f.s of the diagonal sequences of triangle A028338.
%C A288875 The Sheffer triangle  A028338 of the type (1/sqrt(1-2*x), -(1/2)*log(1 - 2*x)) is called here |S1hat[2,1]|. The o.g.f. of the sequence of diagonal d, d >= 0 is D(d, t) = Sum_{m=0..d} A028338(d+m, m)*t^m. The e.g.f. of these o.g.f.s is taken as ED(y,t) := Sum_{d >= 0} D(d, t)*y^(d+1)/(d+1)!.
%C A288875 This e.g.f. is found to be ED(y,t) = 1 - sqrt(1 - 2*x(t;y)), where x = x(t;y) is the compositional inverse of y = y(t;x) = x*(1 - t*(-log(1-2*x)/(2*x))) = x + t*log(1-2*x)/2. The o.g.f.s are then D(d, t) = P(d, t)/(1 - t)^(2*d+1), with the row polynomials P(d, t) = Sum_{m=0..d} T(d, m)*t^m, d >= 0.
%C A288875 This computation was inspired by an article of P. Bala (see a link under, e.g., A112007) for Sheffer triangles of the Jabotinsky type (1, F(x)). There Sheffer is called exponential Riordan, and the diagonals are labeled by n = d+1, n >= 1.
%H A288875 Peter Bala, <a href="/A112007/a112007_Bala.txt">Diagonals of triangles with generating function exp(t*F(x)).</a>
%H A288875 Wolfdieter Lang, <a href="http://arxiv.org/abs/1708.01421">On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], August 2017.
%F A288875 T(n, m) = [x^m] P(n, x), with the numerator polynomial of the o.g.f. of the diagonal n (main diagonal n=0) D(n, x) = P(n, x)/(1-x)^(2*n+1). See a comment above.
%F A288875 T(n, m) = Sum_{i=0..n-m} ( (-1)^(i-n+m)*binomial(2*n+1,n-m-i)*(1/(2^i*i!))*Sum_{j=0..i} (-1)^(i-j)*binomial(i,j)*(2*j+1)^(n+i) ). - _Detlef Meya_, Dec 18 2023, after _Peter Bala_ from A214406.
%e A288875 The triangle T(n, m) begins:
%e A288875 n\m      0        1         2         3         4        5       6    7  8 ...
%e A288875 0:       1
%e A288875 1:       1        1
%e A288875 2:       3        8         1
%e A288875 3:      15       71        33         1
%e A288875 4:     105      744       718       112         1
%e A288875 5:     945     9129     14542      5270       353        1
%e A288875 6:   10395   129072    300291    191384     33057     1080       1
%e A288875 7:  135135  2071215   6524739   6338915   2033885   190125    3265    1
%e A288875 8: 2027025 37237680 150895836 204889344 103829590 18990320 1038780 9824  1
%e A288875 ...
%t A288875 De[d_, t_] := Sum[A028338[d+m, m] t^m, {m, 0, d}]; A028338[n_, k_] := SeriesCoefficient[Times @@ Table[x+i, {i, 1, 2n-1, 2}], {x, 0, k}]; P[n_, x_] := De[n, x] (1-x)^(2n+1); T[n_, m_] := Coefficient[P[n, x], x, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 24 2017 *)
%t A288875 T[n_,m_]:=Sum[(-1)^(i-n+m)*Binomial[2*n+1,n-m-i]*(1/(2^i*i!)*Sum[(-1)^(i-j)*Binomial[i,j]*(2*j+1)^(n+i),{j,0,i}]),{i,0,n-m}];Flatten[Table[T[n,m],{n,0,8},{m,0,n}]] (* _Detlef Meya_, Dec 18 2023, after _Peter Bala_ from A214406 *)
%Y A288875 Cf. A028338, A112007, A214406.
%K A288875 nonn,tabl
%O A288875 0,4
%A A288875 _Wolfdieter Lang_, Jul 21 2017