cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288908 Primes p whose distance from next prime and from previous prime is greater than log(p).

This page as a plain text file.
%I A288908 #28 Feb 16 2025 08:33:48
%S A288908 5,7,23,37,47,53,89,157,173,211,251,257,263,293,331,337,359,367,373,
%T A288908 389,409,479,631,691,701,709,719,787,797,839,919,929,1163,1171,1201,
%U A288908 1249,1259,1381,1399,1409,1471,1511,1523,1531,1637,1709,1733,1801,1811,1823
%N A288908 Primes p whose distance from next prime and from previous prime is greater than log(p).
%C A288908 Primes preceded and followed by larger-than-average prime gaps (see link), then included in A082885.
%H A288908 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/PrimeNumberTheorem.html">Prime Number Theorem</a>
%F A288908 A151799(a(n)) + log(a(n)) < a(n) < A151800(a(n)) - log(a(n)).
%e A288908 n = 5 is a term because 3 + log(5) < 5 < 7 - log(5).
%e A288908 n = 11 is not a term because 13 - 11 < log(11) = 2.39...
%t A288908 Select[Prime@ Range[2, 300], Min@ Abs[# - NextPrime[#, {-1,1}]] > Log[#] &] (* _Giovanni Resta_, Jun 19 2017 *)
%o A288908 (Sage) [n for n in prime_range(3,2000) if next_prime(n)-n>log(n) and n-previous_prime(n)>log(n)]
%o A288908 (Magma)  f:=func<p|Abs(p-NextPrime(p)) gt Log(p) and Abs(p-PreviousPrime(p)) gt Log(p)>;  [p:p in PrimesInInterval(3,2000)|f(p)]; // _Marius A. Burtea_, Dec 19 2019
%Y A288908 Cf. A082885, A151799, A151800, A288907, A330426, A330427, A330428.
%K A288908 nonn
%O A288908 1,1
%A A288908 _Giuseppe Coppoletta_, Jun 19 2017