This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288923 #14 Jan 21 2018 09:38:33 %S A288923 1,64,2,32,3,48,4,16,6,24,8,12,18,20,27,28,30,36,9,40,10,54,14,56,15, %T A288923 60,21,72,5,80,7,96,11,108,13,112,17,120,19,128,22,81,25,84,26,88,33, %U A288923 90,34,100,35,104,38,126,39,132,42,44,45,50,52,63,66,68,70 %N A288923 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has at least 6 prime factors (counted with multiplicity). %C A288923 The number of prime factors counted with multiplicity is given by A001222. %C A288923 This sequence is a permutation of the natural numbers, with inverse A288924. %C A288923 Conjecturally, a(n) ~ n. %C A288923 For a function g over the natural numbers and a constant K, let f(g,K) be the lexicographically earliest sequence of distinct positive terms such that, for any n > 0, g( f(g,K)(n) * f(g,K)(n+1) ) >= K. In particular we have: %C A288923 - f(bigomega, 6) = a (this sequence), where bigomega = A001222, %C A288923 - f(tau, 34) = A288921, where tau = A000005, %C A288923 - f(omega, 5) = A285487, where omega = A001221, %C A288923 - f(omega, 6) = A285655, where omega = A001221. %C A288923 Some of these sequences have similar graphical features. %H A288923 Rémy Sigrist, <a href="/A288923/b288923.txt">Table of n, a(n) for n = 1..20000</a> %H A288923 Rémy Sigrist, <a href="/A288923/a288923.gp.txt">PARI program for A288923</a> %H A288923 Rémy Sigrist, <a href="/A288923/a288923.png">Colored scatterplot of a(n) for n = 1..20000</a> (where the color is function of A001222(a(n))) %H A288923 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A288923 The first terms, alongside a(n) * a(n+1) and its number of prime divisors counted with multiplicity, are: %e A288923 n a(n) a(n)*a(n+1) Bigomega %e A288923 -- ---- ----------- -------- %e A288923 1 1 64 6 %e A288923 2 64 128 7 %e A288923 3 2 64 6 %e A288923 4 32 96 6 %e A288923 5 3 144 6 %e A288923 6 48 192 7 %e A288923 7 4 64 6 %e A288923 8 16 96 6 %e A288923 9 6 144 6 %e A288923 10 24 192 7 %e A288923 11 8 96 6 %e A288923 12 12 216 6 %e A288923 13 18 360 6 %e A288923 14 20 540 6 %e A288923 15 27 756 6 %e A288923 16 28 840 6 %e A288923 17 30 1080 7 %e A288923 18 36 324 6 %e A288923 19 9 360 6 %e A288923 20 40 400 6 %Y A288923 Cf. A001221, A001222, A285487, A285655, A288921, A288924 (inverse). %K A288923 nonn,look %O A288923 1,2 %A A288923 _Rémy Sigrist_, Jun 19 2017