cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A288949 Numbers that are both the sum of two consecutive primes and the sum of two consecutive semiprimes.

This page as a plain text file.
%I A288949 #16 Jul 31 2023 17:50:09
%S A288949 24,36,100,112,120,240,288,320,372,472,532,576,600,810,828,864,882,
%T A288949 924,990,1088,1104,1164,1180,1208,1236,1284,1360,1392,1482,1508,1560,
%U A288949 1584,1620,1632,1692,1740,1818,1900,1920,1938
%N A288949 Numbers that are both the sum of two consecutive primes and the sum of two consecutive semiprimes.
%C A288949 Positions of a(n) in A001043 and A118717: {5, 4}, {7, 6}, {15, 17}, {16, 19}, {17, 21}, {30, 39}, {34, 48}, {37, 53}, {42, 60}, {51, 77}.
%H A288949 Charles R Greathouse IV, <a href="/A288949/b288949.txt">Table of n, a(n) for n = 1..10000</a>
%e A288949 24 is a term because 24 = 11+13 and 24 = 10+14.
%e A288949 Alternatively, 24 = A001043(5) = A118717(4), 36 = A001043(7) = A118717(6).
%t A288949 sp=Select[Range[4,1000],2==PrimeOmega[#]&]; Select[Table[sp[[k]]+sp[[k+1]],{k,100}], #==(p=NextPrime[#/2,-1])+NextPrime[p]&]
%t A288949 Module[{nn=2000,sp},sp=Total/@Partition[Select[Range[nn],PrimeOmega[#]==2&],2,1];Intersection[ sp,Total/@Partition[Prime[Range[nn]],2,1]]] (* _Harvey P. Dale_, Jul 31 2023 *)
%o A288949 (PARI) issemi(n)=bigomega(n)==2
%o A288949 nextsp(x)=x=ceil(x); while(!issemi(x), x++); x
%o A288949 has(n)=precprime((n-1)/2)+nextprime(n/2)==n
%o A288949 list(lim)=my(v=List(),last=4,t); forfactored(n=6,nextsp(lim\2), if(vecsum(n[2][,2])==2, if(has(t=last+n[1]) && t<=lim, listput(v,t)); last=n[1])); Vec(v) \\ _Charles R Greathouse IV_, Feb 19 2018
%Y A288949 Intersection of A001043 and A118717.
%K A288949 nonn
%O A288949 1,1
%A A288949 _Zak Seidov_, Jun 20 2017