This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A288966 #22 Mar 15 2024 07:24:42 %S A288966 1,2,4,3,8,4,12,5,8,6,20,7,24,8,12,9,32,10,36,11,16,12,44,13,24,14,20, %T A288966 15,56,16,60,17,24,18,32,19,72,20,28,21,80,22,84,23,32,24,92,25,48,26, %U A288966 36,27,104,28,48,29,40,30,116,31,120,32,44,33,56,34,132 %N A288966 a(n) = the number of iterations the "HyperbolaTiles" algorithm takes to factorize n. %C A288966 The provided "HyperbolaTiles" algorithm computes a factorization of n and computes a(n), the number of required iterations to reach this factorization. %C A288966 If n = 1, the factorization is considered reached with (n=1*1). %C A288966 If n is prime, the factorization is considered reached with (n=n*1). %C A288966 If n is composite, the exhibited factorization is (n=p*q) with p least prime divisor of n. %H A288966 Luc Rousseau, <a href="/A288966/a288966.pdf">Proof that the algorithm performs integer factorisation</a> %F A288966 Conjecture: a(n) = n + A020639(n) - A032742(n) - 1, for n > 1. - _Ridouane Oudra_, Mar 12 2024 %o A288966 (Java) %o A288966 package oeis; %o A288966 public class A { %o A288966 public static void main(String[] args) { %o A288966 for (int n = 1; n <= 67; n ++) { hyberbolaTiles(n); } %o A288966 } %o A288966 private static void hyberbolaTiles(int n) { %o A288966 int i = 0, x = 0, y = 0, p = 0, q = n; %o A288966 do { %o A288966 i ++; %o A288966 if (y < 0) { x = y + q; q --; } %o A288966 if (y > 0) { p ++; x = y - p; } %o A288966 if (y == 0) { %o A288966 p ++; %o A288966 x = 0; %o A288966 if ((p != 1) || (q == 1)) { %o A288966 System.out.print("" + i + " // " + n + " = " + p + " * " + q); %o A288966 break; %o A288966 } %o A288966 q --; %o A288966 } %o A288966 y = x + p - q; %o A288966 } while (q > 0); %o A288966 } %o A288966 } %Y A288966 Cf. A020639, A032742. %K A288966 nonn %O A288966 1,2 %A A288966 _Luc Rousseau_, Jun 20 2017