This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289020 #28 Jul 07 2017 06:03:13 %S A289020 1,1,2,10,92,1348,28808,845800,32664944,1605553552,97868465696, %T A289020 7245440815264,640359291096512,66598657958731840,8051483595083729024, %U A289020 1119653568781387712128,177465810459239319017216,31804047327185301634148608,6398867435594240638421950976 %N A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks. %C A289020 The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0. %H A289020 Alois P. Heinz, <a href="/A289020/b289020.txt">Table of n, a(n) for n = 0..100</a> %H A289020 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A289020 . a(2) = 2: /\ /\ %e A289020 . /\/ \ / \/\ . %p A289020 b:= proc(n, j, v) option remember; `if`(n=j, %p A289020 `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)* %p A289020 i*binomial(j-1, i-2), i=1..min(j+1, n-j)))) %p A289020 end: %p A289020 a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)): %p A289020 seq(a(n), n=0..18); %t A289020 b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *) %Y A289020 Column k=1 of A288972. %Y A289020 Cf. A000217, A060747, A281874, A287846. %K A289020 nonn %O A289020 0,3 %A A289020 _Alois P. Heinz_, Jun 22 2017