cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.

This page as a plain text file.
%I A289020 #28 Jul 07 2017 06:03:13
%S A289020 1,1,2,10,92,1348,28808,845800,32664944,1605553552,97868465696,
%T A289020 7245440815264,640359291096512,66598657958731840,8051483595083729024,
%U A289020 1119653568781387712128,177465810459239319017216,31804047327185301634148608,6398867435594240638421950976
%N A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.
%C A289020 The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0.
%H A289020 Alois P. Heinz, <a href="/A289020/b289020.txt">Table of n, a(n) for n = 0..100</a>
%H A289020 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%e A289020 . a(2) = 2:      /\    /\
%e A289020 .             /\/  \  /  \/\  .
%p A289020 b:= proc(n, j, v) option remember; `if`(n=j,
%p A289020       `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
%p A289020        i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
%p A289020     end:
%p A289020 a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
%p A289020 seq(a(n), n=0..18);
%t A289020 b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *)
%Y A289020 Column k=1 of A288972.
%Y A289020 Cf. A000217, A060747, A281874, A287846.
%K A289020 nonn
%O A289020 0,3
%A A289020 _Alois P. Heinz_, Jun 22 2017