This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289054 #10 Jul 06 2017 09:27:24 %S A289054 1,1,9,471,82899,36913581,34878248649,62045165964951, %T A289054 190543753640526939,945931782247964900901,7209377339218632463758129, %U A289054 80920117567254715984058542191,1292645840976784584918218615760819,28557854803885245556927129118200208781 %N A289054 Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks. %C A289054 The semilengths of Dyck paths counted by a(n) are elements of the integer interval [3*n-1, n*(n+1)] for n>0. %H A289054 Alois P. Heinz, <a href="/A289054/b289054.txt">Table of n, a(n) for n = 0..60</a> %H A289054 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A289054 . a(2) = 9: /\/\ /\/\ /\/\ /\ /\ %e A289054 . /\/\/ \ /\/ \/\ / \/\/\ /\/\/ \/ \ %e A289054 . %e A289054 . /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ %e A289054 . /\/ \/\/ \ /\/ \/ \/\ / \/\/\/ \ / \/\/ \/\ / \/ \/\/\ . %p A289054 b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0), %p A289054 `if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)* %p A289054 binomial(j-1, i-3)), i=1..min(j+2, n-j)))) %p A289054 end: %p A289054 a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))): %p A289054 seq(a(n), n=0..15); %t A289054 b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *) %Y A289054 Column k=2 of A288972. %K A289054 nonn %O A289054 0,3 %A A289054 _Alois P. Heinz_, Jun 23 2017