cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289054 Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.

This page as a plain text file.
%I A289054 #10 Jul 06 2017 09:27:24
%S A289054 1,1,9,471,82899,36913581,34878248649,62045165964951,
%T A289054 190543753640526939,945931782247964900901,7209377339218632463758129,
%U A289054 80920117567254715984058542191,1292645840976784584918218615760819,28557854803885245556927129118200208781
%N A289054 Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.
%C A289054 The semilengths of Dyck paths counted by a(n) are elements of the integer interval [3*n-1, n*(n+1)] for n>0.
%H A289054 Alois P. Heinz, <a href="/A289054/b289054.txt">Table of n, a(n) for n = 0..60</a>
%H A289054 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%e A289054 . a(2) = 9:           /\/\        /\/\        /\/\             /\  /\
%e A289054 .                /\/\/    \    /\/    \/\    /    \/\/\   /\/\/  \/  \
%e A289054 .
%e A289054 .    /\    /\      /\  /\      /\      /\    /\    /\      /\  /\
%e A289054 . /\/  \/\/  \  /\/  \/  \/\  /  \/\/\/  \  /  \/\/  \/\  /  \/  \/\/\ .
%p A289054 b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
%p A289054       `if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)*
%p A289054        binomial(j-1, i-3)), i=1..min(j+2, n-j))))
%p A289054     end:
%p A289054 a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))):
%p A289054 seq(a(n), n=0..15);
%t A289054 b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* _Indranil Ghosh_, Jul 06 2017, after Maple code *)
%Y A289054 Column k=2 of A288972.
%K A289054 nonn
%O A289054 0,3
%A A289054 _Alois P. Heinz_, Jun 23 2017