This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289055 #53 Aug 05 2024 08:40:29 %S A289055 2,3,6,4,8,12,6,12,18,24,8,16,24,32,40,12,24,36,48,60,72,14,28,42,56, %T A289055 70,84,98,18,36,54,72,90,108,126,144,20,40,60,80,100,120,140,160,180, %U A289055 24,48,72,96,120,144,168,192,216,240,30,60,90,120,150,180,210,240,270,300,330 %N A289055 Triangle read by rows: T(n,k) = (k+1)*A028815(n) for 0 <= k <= n. %H A289055 G. C. Greubel, <a href="/A289055/b289055.txt">Rows n = 0..50 of the triangle, flattened</a> %F A289055 a(n) = A289108(n) + 1. %e A289055 Triangle begins: %e A289055 2; %e A289055 3, 6; %e A289055 4, 8, 12; %e A289055 6, 12, 18, 24; %e A289055 8, 16, 24, 32, 40; %e A289055 12, 24, 36, 48, 60, 72; %e A289055 14, 28, 42, 56, 70, 84, 98; %e A289055 18, 36, 54, 72, 90, 108, 126, 144; %e A289055 20, 40, 60, 80, 100, 120, 140, 160, 180; %e A289055 ... %t A289055 Join[{2}, t[n_, k_] := (k + 1) (Prime[n] + 1); Table[t[n, k], {n, 10}, {k, 0, n}] //Flatten] %o A289055 (Magma) /* As triangle (here NthPrime(0)=1) */ [[(k+1)*(NthPrime(n)+1): k in [0..n]]: n in [0.. 15]]; %o A289055 (SageMath) %o A289055 def A289055(n,k): return 2 if n==0 else (k+1)*(nth_prime(n) +1) %o A289055 flatten([[A289055(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 05 2024 %Y A289055 Cf. A289108. %Y A289055 Columns k: A028815 (k=0), A089241 (k=1), A247159 (k=2), A273801 (k=3). %K A289055 nonn,tabl,less %O A289055 0,1 %A A289055 _Vincenzo Librandi_, Sep 02 2017