This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289111 #17 Sep 08 2022 08:46:19 %S A289111 444813635231,188094798109001,375744782582771,563394767056541, %T A289111 751044751530311,938694736004081,1126344720477851,1313994704951621, %U A289111 1501644689425391,1689294673899161,1876944658372931,2064594642846701,2252244627320471,2439894611794241 %N A289111 a(n) = (2^49 - 2)*n/3 + 444813635231. %C A289111 For all n, the numbers a(n) and a(n) + 2 form a pair of consecutive Riesel numbers. %C A289111 Conjecture: a(0) + 1 = 444813635232 is the smallest nonnegative even number m such that for all k >= 1 the absolute values of the numbers m - 2^k + 1 and m - 2^k - 1 are composite. %H A289111 Colin Barker, <a href="/A289111/b289111.txt">Table of n, a(n) for n = 0..1000</a> %H A289111 Carlos Rivera, <a href="http://primepuzzles.net/coll20th/coll20th-019.htm">Collection 20th - 019</a> %H A289111 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riesel_number">Riesel number</a> %H A289111 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1). %F A289111 a(n) = (2^49 - 2)*n/3 + 444813635231. %F A289111 G.f.: (444813635231 + 187205170838539*x)/(1 - x)^2. %F A289111 From _Colin Barker_, Jun 25 2017: (Start) %F A289111 a(n) = 7*(63544805033 + 26807140639110*n). %F A289111 a(n) = 2*a(n-1) - a(n-2) for n>1. %F A289111 (End) %p A289111 seq(coeff(series((444813635231+187205170838539*x)/(1-x)^2,x,n+1), x, n), n = 0 .. 15); # _Muniru A Asiru_, Oct 01 2018 %t A289111 Table[(2^49 - 2) n/3 + 444813635231, {n, 0, 13}] (* or *) %t A289111 CoefficientList[Series[(444813635231 + 187205170838539 x)/(1 - x)^2, {x, 0, 13}], x] %o A289111 (Magma) [(2^49-2)*n/3+444813635231: n in [0..13]]; %o A289111 (PARI) a(n)=(2^49-2)*n/3+444813635231 %o A289111 (PARI) Vec(7*(63544805033 + 26743595834077*x) / (1 - x)^2 + O(x^15)) \\ _Colin Barker_, Jun 25 2017 %o A289111 (GAP) List([0..15],n->(2^49-2)*n/3+444813635231); # _Muniru A Asiru_, Oct 01 2018 %Y A289111 Cf. A101036. %K A289111 nonn,easy %O A289111 0,1 %A A289111 _Arkadiusz Wesolowski_, Jun 24 2017