A289154 Smallest prime p > 2^n such that none of p -+ 2^0, p -+ 2^1, p -+ 2^2, ..., p -+ 2^n are prime.
5, 23, 53, 211, 251, 787, 787, 1409, 1777, 1777, 1973, 3181, 4889, 8363, 19583, 34171, 66683, 131701, 263227, 527099, 1049011, 2098027, 4196407, 8389001, 16779001, 33555517, 67108913, 134219273, 268435537, 536871743, 1073743303, 2147485673, 4294968857
Offset: 0
Keywords
Examples
a(0) = 5 because prime 5 > 2^0 = 1 and none of 5 - 2^0 = 4, 5 + 2^0 = 6 are prime, a(1) = 23 because prime 23 > 2^1 = 2 and none of 23 - 2^2 = 22, 23 + 2^0 = 24, 23 - 2^1 = 21, 23 + 2^1 = 25 are prime, a(2) = 53 because prime 53 > 2^2 = 4 and none of 53 - 2^0 = 52, 53 + 2^0 = 54, 53 - 2^1 = 51, 53 + 2^1 = 55, 53 - 2^2 = 49, 53 + 2^2 = 57 are prime.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..200
Crossrefs
Cf. A120937.
Programs
-
Mathematica
Table[p = NextPrime[2^n]; While[AnyTrue[p + Flatten@ Map[2^Range[0, n] # &, {-1, 1}], PrimeQ], p = NextPrime@ p]; p, {n, 0, 32}] (* Michael De Vlieger, Jun 27 2017 *)
-
PARI
a(n)=if(n<1, return(5)); forprime(p=2^n+1,, for(k=1,n, if(isprime(p+2^k) || isprime(p-2^k), next(2))); return(p)) \\ Charles R Greathouse IV, Jul 07 2017
Extensions
More terms from Michael De Vlieger, Jun 27 2017
a(15) corrected by Charles R Greathouse IV, Jul 07 2017