cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289154 Smallest prime p > 2^n such that none of p -+ 2^0, p -+ 2^1, p -+ 2^2, ..., p -+ 2^n are prime.

Original entry on oeis.org

5, 23, 53, 211, 251, 787, 787, 1409, 1777, 1777, 1973, 3181, 4889, 8363, 19583, 34171, 66683, 131701, 263227, 527099, 1049011, 2098027, 4196407, 8389001, 16779001, 33555517, 67108913, 134219273, 268435537, 536871743, 1073743303, 2147485673, 4294968857
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Jun 26 2017

Keywords

Examples

			a(0) = 5 because prime 5 > 2^0 = 1 and none of 5 - 2^0 = 4, 5 + 2^0 = 6 are prime,
a(1) = 23 because prime 23 > 2^1 = 2 and none of 23 - 2^2 = 22, 23 + 2^0 = 24, 23 - 2^1 = 21, 23 + 2^1 = 25 are prime,
a(2) = 53 because prime 53 > 2^2 = 4 and none of 53 - 2^0 = 52, 53 + 2^0 = 54, 53 - 2^1 = 51, 53 + 2^1 = 55, 53 - 2^2 = 49, 53 + 2^2 = 57 are prime.
		

Crossrefs

Cf. A120937.

Programs

  • Mathematica
    Table[p = NextPrime[2^n]; While[AnyTrue[p + Flatten@ Map[2^Range[0, n] # &, {-1, 1}], PrimeQ], p = NextPrime@ p]; p, {n, 0, 32}] (* Michael De Vlieger, Jun 27 2017 *)
  • PARI
    a(n)=if(n<1, return(5)); forprime(p=2^n+1,, for(k=1,n, if(isprime(p+2^k) || isprime(p-2^k), next(2))); return(p)) \\ Charles R Greathouse IV, Jul 07 2017

Extensions

More terms from Michael De Vlieger, Jun 27 2017
a(15) corrected by Charles R Greathouse IV, Jul 07 2017