This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289173 #41 Apr 22 2025 04:33:55 %S A289173 2,6,20,60,208,624,2080,6240,18720,58240,176000,529408,1593344, %T A289173 4780032,14344192,43040768,129138688,387416064,1162248192,3486777344, %U A289173 10460332032,31380996096,94142988288,282428964864,847286894592,2541860683776,7625582051328 %N A289173 The largest n-almost prime less than 3^n. %C A289173 All terms are even as 3^n is the first odd n-almost prime. %H A289173 Jon E. Schoenfield, <a href="/A289173/b289173.txt">Table of n, a(n) for n = 1..100</a> %e A289173 a(26) = 2541860683776 = 3^26 - 5144553 = 2^18*3^6*47*283 (a 26-almost prime). %e A289173 From _Michael De Vlieger_, Jun 27 2017: (Start) %e A289173 Table of prime factors of a(n) for 1 <= n <= 16: %e A289173 1: 2 %e A289173 2: 2 3 %e A289173 3: 2 2 5 %e A289173 4: 2 2 3 5 %e A289173 5: 2 2 2 2 13 %e A289173 6: 2 2 2 2 3 13 %e A289173 7: 2 2 2 2 2 5 13 %e A289173 8: 2 2 2 2 2 3 5 13 %e A289173 9: 2 2 2 2 2 3 3 5 13 %e A289173 10: 2 2 2 2 2 2 2 5 7 13 %e A289173 11: 2 2 2 2 2 2 2 5 5 5 11 %e A289173 12: 2 2 2 2 2 2 2 2 2 2 11 47 %e A289173 13: 2 2 2 2 2 2 2 2 2 2 2 2 389 %e A289173 14: 2 2 2 2 2 2 2 2 2 2 2 2 3 389 %e A289173 15: 2 2 2 2 2 2 2 2 2 2 2 2 2 17 103 %e A289173 16: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 37 71(End) %t A289173 Table[SelectFirst[Range[3^n - 1, 2^n, -1], PrimeOmega@ # == n &], {n, 18}] (* _Michael De Vlieger_, Jun 27 2017 *) %o A289173 (PARI) for (n = 1,26, m = 3^n-1; while(bigomega(m) <> n, m = m-2); print1 (m ",")) %o A289173 (PARI) a(n)=my(target=n-1); forstep(k=3^n\2,1,-1, if(bigomega(k)==target, return(2*k))) \\ _Charles R Greathouse IV_, Jul 05 2017 %o A289173 (Python) %o A289173 from math import prod, isqrt %o A289173 from sympy import primepi, primerange, integer_nthroot %o A289173 def A289173(n): %o A289173 def bisection(f,kmin=0,kmax=1): %o A289173 while f(kmax) > kmax: kmax <<= 1 %o A289173 kmin = kmax >> 1 %o A289173 while kmax-kmin > 1: %o A289173 kmid = kmax+kmin>>1 %o A289173 if f(kmid) <= kmid: %o A289173 kmax = kmid %o A289173 else: %o A289173 kmin = kmid %o A289173 return kmax %o A289173 def almostprimepi(n,k): %o A289173 if k==0: return int(n>=1) %o A289173 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) %o A289173 return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n)) %o A289173 m = almostprimepi(3**n-1,n) %o A289173 def f(x): return m+x-almostprimepi(x,n) %o A289173 return bisection(f,m,m) # _Chai Wah Wu_, Mar 29 2025 %Y A289173 Cf. A078843 (where 3^n occurs in n-almost primes). %K A289173 nonn %O A289173 1,1 %A A289173 _Zak Seidov_, Jun 26 2017 %E A289173 a(27) from _Jon E. Schoenfield_, Jul 02 2017