This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289179 #10 Feb 16 2025 08:33:48 %S A289179 0,1,4,14,28,55,88,140,200,285,380,506,644,819,1008,1240,1488,1785, %T A289179 2100,2470,2860,3311,3784,4324,4888,5525,6188,6930,7700,8555,9440, %U A289179 10416,11424,12529,13668,14910,16188,17575,19000,20540,22120,23821,25564,27434,29348,31395 %N A289179 Edge count of the n X n white bishop graph. %C A289179 Sequence extended to a(1) using formula. %H A289179 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCount.html">Edge Count</a> %H A289179 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WhiteBishopGraph.html">White Bishop Graph</a> %H A289179 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -4, 1, 2, -1). %F A289179 a(n) = ((-1 + n)*(-3 + 3*(-1)^n - 2*n + 4*n^2))/12. %F A289179 a(n) = 2*a(n-1)+a(n-2)-4*a(n-3)+a(n-4)+2*a(n-5)-a(n-6). %F A289179 G.f. = x*(x + 2x^2 + 5x^3)/((-1 + x)^4*(1 + x)^2). [Corrected by _Georg Fischer_, May 19 2019] %t A289179 Table[(n - 1) (4 n^2 - 2 n - 3 + 3 (-1)^n)/12, {n, 20}] %t A289179 LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 1, 4, 14, 28, 55}, 20] %t A289179 CoefficientList[Series[x(x + 2 x^2+ 5 x^3)/((-1 + x)^4 (1 + x)^2), {x, 0, 20}], x] (* Corrected by _Georg Fischer_, May 19 2019 *) %Y A289179 Cf. A225972 (black bishop graph edge count). %K A289179 nonn %O A289179 1,3 %A A289179 _Eric W. Weisstein_, Jun 27 2017