cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289187 The arithmetic function v_1(n,6).

This page as a plain text file.
%I A289187 #18 Aug 21 2017 12:59:47
%S A289187 1,1,2,1,3,1,4,3,5,2,6,2,7,5,8,3,9,3,10,7,11,4,12,5,13,9,14,5,15,5,16,
%T A289187 11,17,7,18,6,19,13,20,7,21,7,22,15,23,8,24,8,25,17,26,9,27,11,28,19,
%U A289187 29,10,30,10,31,21,32,13,33,11,34,23,35
%N A289187 The arithmetic function v_1(n,6).
%D A289187 J. Butterworth, Examining the arithmetic function v_g(n,h). Research Papers in Mathematics, B. Bajnok, ed., Gettysburg College, Vol. 8 (2008).
%H A289187 Bela Bajnok, <a href="https://arxiv.org/abs/1705.07444">Additive Combinatorics: A Menu of Research Problems</a>, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.1.
%t A289187 v[g_, n_, h_] := (d = Divisors[n]; Max[(Floor[(d - 1 - GCD[d, g])/h] + 1)*n/d]); Table[v[1, n, 6], {n, 2, 70}]
%t A289187 a[n_]:=n Max[Table[(Floor[(d - 1 - GCD[d, 1])/6] + 1)/d, {d, Divisors[n]}]]; Table[a[n], {n, 2, 100}] (* _Vincenzo Librandi_, Aug 17 2017 *)
%Y A289187 Cf. A289435, A289436, A289437, A289438, A289439, A289440, A289441.
%K A289187 nonn
%O A289187 2,3
%A A289187 _Robert Price_, Aug 16 2017