cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289194 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has no isolated 1 in its base-2 representation.

This page as a plain text file.
%I A289194 #9 Jun 29 2017 13:47:13
%S A289194 1,3,2,6,4,7,8,12,5,11,9,14,16,15,13,19,21,22,10,23,17,24,18,27,29,30,
%T A289194 26,35,52,38,25,31,32,28,33,47,34,46,20,39,40,44,36,43,37,48,41,75,53,
%U A289194 59,61,54,57,55,58,60,64,51,65,56,66,62,50,71,45,78,42
%N A289194 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has no isolated 1 in its base-2 representation.
%C A289194 A144795 gives the numbers without isolated 1's in base-2 representation.
%C A289194 This sequence is conjectured to be a permutation of the natural numbers.
%C A289194 This sequence has similarities with A269361: here we require that the product of two consecutive terms has no isolated 1, there the product of two consecutive terms has only isolated 1's, in base-2 representation.
%C A289194 For any k > 0:
%C A289194 - a(2*k-1) belongs to A091072,
%C A289194 - a(2*k) belongs to A091067.
%H A289194 Rémy Sigrist, <a href="/A289194/b289194.txt">Table of n, a(n) for n = 1..10000</a>
%H A289194 Rémy Sigrist, <a href="/A289194/a289194.gp.txt">PARI program for A289194</a>
%e A289194 The first terms, alongside a(n)*a(n+1) in binary, are:
%e A289194 n       a(n)    a(n)*a(n+1) in binary
%e A289194 --      ----    ---------------------
%e A289194 1       1       11
%e A289194 2       3       110
%e A289194 3       2       1100
%e A289194 4       6       11000
%e A289194 5       4       11100
%e A289194 6       7       111000
%e A289194 7       8       1100000
%e A289194 8       12      111100
%e A289194 9       5       110111
%e A289194 10      11      1100011
%e A289194 11      9       1111110
%e A289194 12      14      11100000
%e A289194 13      16      11110000
%e A289194 14      15      11000011
%e A289194 15      13      11110111
%e A289194 16      19      110001111
%e A289194 17      21      111001110
%e A289194 18      22      11011100
%e A289194 19      10      11100110
%e A289194 20      23      110000111
%t A289194 a = {1}; Do[k = 1; While[Nand[! MemberQ[a, k], ! MemberQ[Length /@ DeleteCases[Split[IntegerDigits[k Last[a], 2]], s_ /; First@ s == 0], 1]], k++]; AppendTo[a, k], {n, 2, 67}]; a (* _Michael De Vlieger_, Jun 29 2017 *)
%Y A289194 Cf. A091067, A091072, A144795, A269361.
%K A289194 nonn,base,look
%O A289194 1,2
%A A289194 _Rémy Sigrist_, Jun 28 2017