This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289194 #9 Jun 29 2017 13:47:13 %S A289194 1,3,2,6,4,7,8,12,5,11,9,14,16,15,13,19,21,22,10,23,17,24,18,27,29,30, %T A289194 26,35,52,38,25,31,32,28,33,47,34,46,20,39,40,44,36,43,37,48,41,75,53, %U A289194 59,61,54,57,55,58,60,64,51,65,56,66,62,50,71,45,78,42 %N A289194 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has no isolated 1 in its base-2 representation. %C A289194 A144795 gives the numbers without isolated 1's in base-2 representation. %C A289194 This sequence is conjectured to be a permutation of the natural numbers. %C A289194 This sequence has similarities with A269361: here we require that the product of two consecutive terms has no isolated 1, there the product of two consecutive terms has only isolated 1's, in base-2 representation. %C A289194 For any k > 0: %C A289194 - a(2*k-1) belongs to A091072, %C A289194 - a(2*k) belongs to A091067. %H A289194 Rémy Sigrist, <a href="/A289194/b289194.txt">Table of n, a(n) for n = 1..10000</a> %H A289194 Rémy Sigrist, <a href="/A289194/a289194.gp.txt">PARI program for A289194</a> %e A289194 The first terms, alongside a(n)*a(n+1) in binary, are: %e A289194 n a(n) a(n)*a(n+1) in binary %e A289194 -- ---- --------------------- %e A289194 1 1 11 %e A289194 2 3 110 %e A289194 3 2 1100 %e A289194 4 6 11000 %e A289194 5 4 11100 %e A289194 6 7 111000 %e A289194 7 8 1100000 %e A289194 8 12 111100 %e A289194 9 5 110111 %e A289194 10 11 1100011 %e A289194 11 9 1111110 %e A289194 12 14 11100000 %e A289194 13 16 11110000 %e A289194 14 15 11000011 %e A289194 15 13 11110111 %e A289194 16 19 110001111 %e A289194 17 21 111001110 %e A289194 18 22 11011100 %e A289194 19 10 11100110 %e A289194 20 23 110000111 %t A289194 a = {1}; Do[k = 1; While[Nand[! MemberQ[a, k], ! MemberQ[Length /@ DeleteCases[Split[IntegerDigits[k Last[a], 2]], s_ /; First@ s == 0], 1]], k++]; AppendTo[a, k], {n, 2, 67}]; a (* _Michael De Vlieger_, Jun 29 2017 *) %Y A289194 Cf. A091067, A091072, A144795, A269361. %K A289194 nonn,base,look %O A289194 1,2 %A A289194 _Rémy Sigrist_, Jun 28 2017