cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289199 a(n) is the number of odd integers divisible by 13 in the open interval (12*(n-1)^2, 12*n^2).

This page as a plain text file.
%I A289199 #33 Jul 04 2017 21:21:57
%S A289199 0,0,2,2,3,5,5,6,7,7,9,10,10,12,12,14,14,15,17,17,18,19,19,21,22,22,
%T A289199 24,24,26,26,27,29,29,30,31,31,33,34,34,36,36,38,38,39,41,41,42,43,43,
%U A289199 45,46,46,48,48,50,50,51,53,53,54,55,55,57,58,58,60,60,62,62,63,65
%N A289199 a(n) is the number of odd integers divisible by 13 in the open interval (12*(n-1)^2, 12*n^2).
%C A289199 This sequence has the form (0+12k, 0+12k, 2+12k, 2+12k, 3+12k, 5+12k, 5+12k, 6+12k, 7+12k, 7+12k, 9+12k, 10+12k, 10+12k) for k >= 0.
%C A289199 Theorems: A) Generally for an interval (2*m*(n-1)^2,2*m*n^2) and a divisor d with 2*m < d there is a unique d-length form (e_i+2*m*k)_{i=0..d-1, k>=0} with e_i in [0,2*m]; here m = 6, d = 13.
%C A289199 B) Sum_{i=0..d-1}e_i = m*(d-2); here 66 = 6*(13-2).
%C A289199 Proof:
%C A289199 A) In d consecutive intervals
%C A289199 (2*m*(n-1)^2,2*m*(n+2)^2) there are m*d*(2*k+d) consecutive odd numbers and therefore m*(2*k+d) multiples of d where k=floor((n-1)/d).
%C A289199 B) With initial value a(0)=0 we have a(d)=2*m and thus Sum_{i=0..d-1} e_i = Sum_{i=1..d}a(i)-a(d) = m(2*0+d)-2*m = m*(d-2). Q.E.D.
%H A289199 Colin Barker, <a href="/A289199/b289199.txt">Table of n, a(n) for n = 0..1000</a>
%H A289199 <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,1,-1).
%F A289199 a(n + 13*k) = a(n) + 12*k.
%F A289199 a(n) = 12n/13 + O(1). - _Charles R Greathouse IV_, Jun 29 2017
%F A289199 From _Colin Barker_, Jul 03 2017: (Start)
%F A289199 G.f.: x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)).
%F A289199 a(n) = a(n-1) + a(n-13) - a(n-14) for n>13.
%F A289199 (End)
%t A289199 Table[Count[Mod[Table[2(6(n-1)^2 +k)-1,{k,12 n-6}],13],0],{n,0,70}]
%o A289199 (PARI) a(n)=(12*n^2+12)\26 - (12*n^2-24*n+25)\26 \\ _Charles R Greathouse IV_, Jun 29 2017
%o A289199 (PARI) concat(vector(2), Vec(x^2*(1 + x)*(1 - x + x^2)*(2 + x^2 + x^6 + 2*x^8) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12)) + O(x^100))) \\ _Colin Barker_, Jul 03 2017
%Y A289199 Cf. A004523, A288156, A289120, A289122, A289133, A289139, A289195.
%K A289199 nonn,easy
%O A289199 0,3
%A A289199 _Ralf Steiner_, Jun 28 2017