This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289223 #11 Jul 01 2017 13:16:55 %S A289223 0,0,12,66,204,480,960,1722,2856,4464,6660,9570,13332,18096,24024, %T A289223 31290,40080,50592,63036,77634,94620,114240,136752,162426,191544, %U A289223 224400,261300,302562,348516,399504,455880,518010,586272,661056,742764,831810,928620,1033632,1147296 %N A289223 Number of ways to select 2 disjoint point triples from an n X n X n triangular point grid, each point triple forming an 2 X 2 X 2 triangle. %C A289223 Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A117662(n-1). %H A289223 Heinrich Ludwig, <a href="/A289223/b289223.txt">Table of n, a(n) for n = 2..100</a> %H A289223 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A289223 a(n) = (n^4 -4*n^3 -7*n^2 +46*n -48)/2 for n>=2. %F A289223 From _Colin Barker_, Jun 28 2017: (Start) %F A289223 G.f.: 6*x^4*(2 - x)*(1 + x) / (1 - x)^5. %F A289223 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>6. %F A289223 (End) %e A289223 There are 12 ways to choose two 2 X 2 X 2 triangles (xxx) from a 4 X 4 X 4 point grid, for example: %e A289223 x x x %e A289223 x x x x x x %e A289223 . x x x . . . x . %e A289223 . . x . x x . . . x x . %e A289223 The other nine selections are reflections or rotations of these three. %o A289223 (PARI) Vec(6*x^4*(2 - x)*(1 + x) / (1 - x)^5 + O(x^60)) \\ _Colin Barker_, Jun 28 2017 %Y A289223 Cf. A117662, A289222, A289224, A289225, A289226, A289227, A289228. %K A289223 nonn,easy %O A289223 2,3 %A A289223 _Heinrich Ludwig_, Jun 28 2017