This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289225 #9 Jun 30 2017 21:18:31 %S A289225 0,13,859,9585,56520,231635,749223,2051819,4965960,10924065,22268395, %T A289225 42654733,77575104,135020535,226306535,367085655,578573168,889013589, %U A289225 1335417435,1965599305,2840550040,4037177403,5651451399,7801992035,10634139000,14324544425,19086331563 %N A289225 Number of ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle. %C A289225 Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289231. %H A289225 Heinrich Ludwig, <a href="/A289225/b289225.txt">Table of n, a(n) for n = 4..100</a> %H A289225 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A289225 a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24. %F A289225 From _Colin Barker_, Jun 30 2017: (Start) %F A289225 G.f.: x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9. %F A289225 a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12. %F A289225 (End) %e A289225 There are thirteen ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid, for example: %e A289225 a a a . %e A289225 a a a a a a a a %e A289225 b c c . d . . . . . a . %e A289225 b b c d b d d c b c c d b c c d %e A289225 . . . d d b b . c c b b c d d b b c d d %e A289225 The other nine possible selections are rotations and reflections of these. %e A289225 Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only. %p A289225 A289225:=n->(n^8 -8*n^7 -50*n^6 +556*n^5 +231*n^4 -12388*n^3 +17914*n^2 +86648*n -198528)/24: seq(A289225(n), n=4..50); # _Wesley Ivan Hurt_, Jun 29 2017 %o A289225 (PARI) concat(0, Vec(x^5*(13 + 742*x + 2322*x^2 + 87*x^3 - 2503*x^4 + 684*x^5 + 560*x^6 - 225*x^7) / (1 - x)^9 + O(x^30))) \\ _Colin Barker_, Jun 30 2017 %Y A289225 Cf. A289222, A289223, A289224, A289226, A289227, A289228, A289231. %K A289225 nonn,easy %O A289225 4,2 %A A289225 _Heinrich Ludwig_, Jun 29 2017