cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A289226 Number of ways to select 5 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 420, 15108, 190371, 1336320, 6528948, 24951780, 79851975, 223419840, 562591836, 1301255556, 2806131075, 5705746752, 11034449244, 20436317412, 36447218199, 62877079680, 105318792564, 171815016708, 273719593923, 426796282752, 652604165220, 980226360036, 1448406641607
Offset: 5

Views

Author

Heinrich Ludwig, Jul 01 2017

Keywords

Comments

Rotations and reflections of a selection are regarded as different. For the number of congruence classes see A289232.

Examples

			There are 420 ways to choose five 2 X 2 X 2 triangles (aaa, ..., eee) from a 6 X 6 X 6 point grid, for example:
        .               a
       . .             a a
      . . .           . d .
     a a b b         b d d c
    c a d b e       b b e c c
   c c d d e e     . . e e . .
Note: aaa, ..., eee are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Jul 01 2017

Formula

a(n) = (n^10 -10*n^9 -85*n^8 +1160*n^7 +1345*n^6 -49162*n^5 +62145*n^4 +892140*n^3 -2198566*n^2 -5725008*n +18190440)/120.
G.f.: 3*x^6*(140 + 3496*x + 15761*x^2 + 1293*x^3 - 18129*x^4 + 3779*x^5 + 6103*x^6 - 1637*x^7 - 1139*x^8 + 413*x^9) / (1 - x)^11. - Colin Barker, Jul 01 2017

A289229 Triangle read by rows: T(n, k) is the number of nonequivalent ways to select k disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

1, 1, 1, 1, 2, 0, 1, 3, 3, 2, 1, 5, 14, 19, 4, 0, 1, 7, 40, 127, 159, 77, 17, 0, 1, 9, 90, 536, 1644, 2569, 1876, 500, 42, 1, 1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0, 1, 15, 308, 4357, 38872, 223346, 832628, 2005948, 3072004, 2897626
Offset: 1

Views

Author

Heinrich Ludwig, Jul 04 2017

Keywords

Comments

The row index starts from 1. The column index k runs from 0 to floor(n*(n+1)/6), which is a trivial upper bound for the maximal number of 2 X 2 X 2 triangles that can be selected from an n X n X n triangular grid.
Rotations and reflections of a selection are not counted. If they are to be counted, see A289222.

Examples

			The triangle begins:
  1;
  1,  1;
  1,  2,   0;
  1,  3,   3,    3;
  1,  5,  14,   19,    4,     0;
  1,  7,  40,  127,  159,    77,    17,     0;
  1,  9,  90,  536, 1644,  2569,  1876,   500,    42,     1;
  1, 12, 175, 1688, 9548, 31951, 62171, 67765, 39459, 11579, 1547, 47, 0;
		

Crossrefs

Columns 2 to 6: A001840, A117662, A289230, A289231, A289232.

A289230 Number of nonequivalent ways to select 3 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 2, 19, 127, 536, 1688, 4357, 9789, 19844, 37172, 65397, 109335, 175214, 270934, 406329, 593463, 846934, 1184212, 1625979, 2196509, 2924050, 3841240, 4985531, 6399647, 8132044, 10237410, 12777167, 15820007, 19442436, 23729352, 28774625, 34681717, 41564304, 49546932
Offset: 3

Views

Author

Heinrich Ludwig, Jun 30 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289224.

Examples

			There are two nonequivalent ways to choose three 2 X 2 X 2 triangles (aaa, bbb, ccc) from a 4 X 4 X 4 point grid:
      a           a
     a a         a a
    b c c       b . c
   b b c .     b b c c
Note: aaa, bbb, ccc are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^4*(2 + 9*x + 50*x^2 + 60*x^3 + 37*x^4 - 21*x^5 - 20*x^6 - 4*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^6 -6*n^5 -24*n^4 +220*n^3 -153*n^2 -1488*n +2592)/36 + IF(MOD(n, 2) = 1, -1)/2 + IF(MOD(n, 3) = 1, -2)/9.
G.f.: x^4*(2 + 9*x + 50*x^2 + 60*x^3 + 37*x^4 - 21*x^5 - 20*x^6 - 4*x^7 + 7*x^8) / ((1 - x)^7*(1 + x)*(1 + x + x^2)). - Colin Barker, Jun 30 2017

A289231 Number of nonequivalent ways to select 4 disjoint point triples from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle.

Original entry on oeis.org

0, 4, 159, 1644, 9548, 38872, 125367, 342831, 829052, 1822785, 3714519, 7113539, 12935256, 22511616, 37728563, 61194888, 96446684, 148191316, 222597315, 327633979, 473466444, 672912717, 941968139, 1300402591, 1772439504, 2387521212, 3181168199, 4195941108, 5482512012
Offset: 4

Views

Author

Heinrich Ludwig, Jun 30 2017

Keywords

Comments

Rotations and reflections of a selection are not counted. If they are to be counted see A289225.

Examples

			There are four nonequivalent ways to choose four 2 X 2 X 2 triangles (aaa, ..., ddd) from a 5 X 5 X 5 point grid:
      a           a           a           .
     a a         a a         a a         a a
    b c c       . d .       . . .       . a .
   b b c d     b d d c     b c c d     b c c d
  . . . d d   b b . c c   b b c d d   b b c d d
Note: aaa, ..., ddd are not distinguishable, they are denoted differently for a better perception of the 2 X 2 X 2 triangles only.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3) + O(x^40))) \\ Colin Barker, Jun 30 2017

Formula

a(n) = (n^8 -8*n^7 -50*n^6 +556*n^5 +261*n^4 -12724*n^3 +19088*n^2 +86016*n -201024)/144 + IF(MOD(n, 2) = 1, -2*n +5)/4 + IF(MOD(n, 3) = 1, -n^2 +2*n +12)/9.
G.f.: x^5*(4 + 143*x + 1024*x^2 + 3612*x^3 + 7423*x^4 + 10001*x^5 + 8395*x^6 + 3273*x^7 - 1362*x^8 - 2393*x^9 - 878*x^10 + 488*x^11 + 539*x^12 + 101*x^13 - 89*x^14 - 41*x^15) / ((1 - x)^9*(1 + x)^2*(1 + x + x^2)^3). - Colin Barker, Jun 30 2017
Showing 1-4 of 4 results.