This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289233 #49 Mar 03 2024 23:56:13 %S A289233 0,1,1,3,4,6,9,11,15,18,22,26,30,35,39,45,50,56,63,69,77,84,92,100, %T A289233 108,117,125,135,144,154,165,175,187,198,210,222,234,247,259,273,286, %U A289233 300,315,329,345,360,376,392,408,425,441,459,476,494,513,531,551,570 %N A289233 Largest number of disjoint point triples that can be chosen from an n X n X n triangular point grid, each point triple forming a 2 X 2 X 2 triangle. %C A289233 A001840(n-1) = floor(n*(n+1)/6) is a trivial upper bound for a(n), which is not reached for n = 3, 5, 6, 8, 15, 17, 18, 20 but for all other n <= 21. %C A289233 From _Jon E. Schoenfield_, Aug 16 2017: (Start) %C A289233 If n is even, then the bottom three rows of points can be assembled into n-1 of the 3-point triangles; e.g., the full grid for n = 8 has 8*9/2 = 36 points, of which the 21 points in the bottom three rows can be assembled into 7 three-point triangles as follows, leaving the remaining 15 points in the same triangular arrangement as in the full grid for the n = 5 case: %C A289233 . %C A289233 Row 1: . %C A289233 . %C A289233 Row 2: . . %C A289233 . %C A289233 Row 3: . . . %C A289233 . %C A289233 Row 4: . . . . %C A289233 . %C A289233 Row 5: . . . . . %C A289233 . %C A289233 Row 6: 2---2 4---4 6---6 %C A289233 . \ / \ / \ / %C A289233 Row 7: 1 2 3 4 5 6 7 %C A289233 . / \ / \ / \ / \ %C A289233 Row 8: 1---1 3---3 5---5 7---7 %C A289233 . %C A289233 Thus, if n is even, then a(n) >= a(n-3) + n - 1. %C A289233 Similarly, if n mod 3 = 2, then the bottom two rows of points can be assembled into (2n-1)/3 of the 3-point triangles; e.g., of the 36 points in the full grid for n = 8, the 15 points in the bottom two rows can be assembled into 5 three-point triangles as follows, leaving the remaining 21 points in the same triangular arrangement as in the full grid for the n=6 case: %C A289233 . %C A289233 Row 1: . %C A289233 . %C A289233 Row 2: . . %C A289233 . %C A289233 Row 3: . . . %C A289233 . %C A289233 Row 4: . . . . %C A289233 . %C A289233 Row 5: . . . . . %C A289233 . %C A289233 Row 6: . . . . . . %C A289233 . %C A289233 Row 7: 1 2---2 3 4---4 5 %C A289233 . / \ \ / / \ \ / / \ %C A289233 Row 8: 1---1 2 3---3 4 5---5 %C A289233 . %C A289233 Thus, if n mod 3 = 2, then a(n) >= a(n-2) + (2n-1)/3. %C A289233 Given the terms through a(21) = 77, the two lower bounds above and the upper bound a(n) <= floor(n(n+1)/6) are sufficient to establish that a(22) = 84, a(23) = 92, a(24) = 100, a(26) = 117, and a(28) = 135. (A solution with 108 three-point triangles can be constructed on the n = 25 grid.) %C A289233 Conjecture: a(n) = floor((n(n+1) - floor(((n+3) mod 12)/6))/6); i.e., the upper bound floor(n(n+1)/6) can be reached unless n(n+1)/2 is a multiple of 3 and (n+3) mod 12 >= 6, in which case a(n) falls short of the upper bound by 1. (End) %C A289233 a(31) = 165, a(33) = 187, a(34) = 198, a(35) = 210, a(36) = 222, a(37) = 234, a(38) = 247, and a(40) = 273. - _Rob Pratt_, Dec 19 2017 %C A289233 From _Jon E. Schoenfield_, Dec 21 2017: (Start) %C A289233 If we refer to a triangular grid with n points on each side simply as an "n-triangle", then for any n > 13, the n-triangle can be broken into an (n-12)-triangle, a 12-triangle, and a parallelogram-shaped grid with 12 points on each of two opposite sides and n-12 points on each of the other two sides (with n-12 > 1). E.g., we can break the 21-triangle into (1) a 9-triangle, (2) a 12-triangle, and (3) a 9 X 12 parallelogram grid: %C A289233 ___________ %C A289233 1 ^ %C A289233 1 1 | %C A289233 1 1 1 | %C A289233 1 1 1 1 | %C A289233 1 1 1 1 1 9 %C A289233 1 1 1 1 1 1 | %C A289233 1 1 1 1 1 1 1 | %C A289233 1 1 1 1 1 1 1 1 | %C A289233 1 1 1 1 1 1 1 1 1__v %C A289233 _________________ %C A289233 2 3 3 3 3 3 3 3 3 3 ^ %C A289233 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 12 %C A289233 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 | %C A289233 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 ____v %C A289233 | || | %C A289233 |<---------12---------->||<-------9------->| %C A289233 . %C A289233 All points of a 2 X 12 parallelogram grid and all points of a 3 X 12 parallelogram grid can be assembled into 3-point triangles using the simple patterns %C A289233 . %C A289233 o o o o . %C A289233 o . o . . %C A289233 . . o o . %C A289233 o o o . . %C A289233 o . o o . %C A289233 . . and o . . %C A289233 o o o o . %C A289233 o . o . . %C A289233 . . o o . %C A289233 o o o . . %C A289233 o . o o . %C A289233 . . o . . %C A289233 . %C A289233 respectively, so those patterns can be combined to assemble a k X 12 parallelogram completely into 3-point triangles for any k > 1. Thus, since both the 12-triangle and the (n-12) X 12 parallelogram grid can be completely assembled into 3-point triangles for any n > 13, we have, for n > 13, a(n) >= a(n-12) + a(12) + (n-12)*12/3, which reduces to a(n) >= a(n-12) + 4n - 22. In particular, if the trivial upper bound floor(n*(n+1)/6) is reached by a(n), then it is also reached by a(n+12k) for any positive integer k. Given a(1)..a(12), this is sufficient to prove that a(n) = floor(n*(n+1)/6) except when n mod 12 is 3, 5, 6, or 8; in those cases, a(n) >= floor(n*(n+1)/6) - 1. (End) %C A289233 Theorem 1.1 of the Conway and Lagarias link indicates that all the points can be covered by 3-point triangles iff n mod 12 = 0, 2, 9, or 11. That fact, together with the above results for a(n) in the specific cases for n in [1, 3..8, 10] and the recursive lower bound a(n) >= a(n-12) + 4n - 22, is sufficient to prove that a(n) = floor(n*(n+1)/6) - d where d is 1 when n mod 12 is in [3, 5, 6, 8] and 0 otherwise. - _Jon E. Schoenfield_, Dec 26 2017 %H A289233 J. H. Conway and J. C. Lagarias, <a href="https://doi.org/10.1016/0097-3165(90)90057-4">Tiling with Polyominoes and Combinatorial Group Theory</a>, JCTA 53 (1990), 183-208. %H A289233 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -1, -2, 2, 1, 0, -2, 1). %F A289233 G.f.: x*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x + x^2)*(1 - x^2 + x^4)) (conjectured). - _Colin Barker_, Jul 08 2017 %F A289233 a(n) = floor(n*(n+1)/6) except when n mod 12 is 3, 5, 6, or 8; in those cases, a(n) = floor(n*(n+1)/6) - 1. - _Jon E. Schoenfield_, Dec 25 2017 %e A289233 From a 21 X 21 X 21 point grid up to 77 disjoint 2 X 2 X 2 triangles (aaa, bbb, ...) can be chosen. Selections like the one below with no point left are very rare compared to C(400, 77). 400 is the total number of 2 X 2 X 2 triangles in the 21-grid. %e A289233 a %e A289233 a a %e A289233 c c b %e A289233 d c b b %e A289233 d d f f e %e A289233 h h g f e e %e A289233 i h g g k k j %e A289233 i i l m m k j j %e A289233 p p l l m n q q o %e A289233 r p s t t n n q o o %e A289233 r r s s t u w w x x v %e A289233 y a a b b u u w z x v v %e A289233 y y a c b d f f z z g g e %e A289233 j j h c c d d f i k k g e e %e A289233 l j h h m m n n i i k o o p p %e A289233 l l w w q m r n s x x t o u p v %e A289233 y z z w q q r r s s x t t u u v v %e A289233 y y z f f a g g b h h c i i d j j e %e A289233 k k l l f a a g b b h c c i d d j e e %e A289233 m k n l o u u p v v q w w r x x s y y t %e A289233 m m n n o o u p p v q q w r r x s s y t t %t A289233 f[n_] := Floor[n (n +1)/6] - If[ !MemberQ[{3, 5, 6, 8}, Mod[n, 12]], 0, 1]; Array[f, 58] (* or *) %t A289233 CoefficientList[ Series[(-x +x^2 -x^3 +x^4 -x^5)/((-1 +x)^3 (1 +x -x^3 +x^5 +x^6)), {x, 0, 57}], x] (* or *) %t A289233 LinearRecurrence[{2, 0, -1, -2, 2, 1, 0, -2, 1}, {0, 1, 1, 3, 4, 6, 9, 11, 15}, 58] (* _Robert G. Wilson v_, Dec 26 2017 *) %Y A289233 Cf. A001840, A289222, A289229. %K A289233 nonn %O A289233 1,4 %A A289233 _Heinrich Ludwig_, Jul 08 2017 %E A289233 a(22)-a(26) from _Jon E. Schoenfield_, Aug 16 2017 %E A289233 a(27)-a(28) from _Rob Pratt_, Dec 19 2017 %E A289233 More terms from _Jon E. Schoenfield_, Dec 25 2017