cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289237 Find the first (maximal) string, of length exactly n, of consecutive primes that alternate between types 6*k+1 and 6*k+5 or 6*k+5 and 6*k+1. The first element is a(n).

This page as a plain text file.
%I A289237 #7 Jun 29 2017 10:54:57
%S A289237 53,29,67,37,449,179,5,389,89,2213,11149,10369,6761,113341,80447,
%T A289237 151909,43777,2964553,1457333,175573,809,3954889,121930481,96050953,
%U A289237 15186319,296080717,98380549,77011289,2720227693,5696814287,1572386903,4136299357,288413159
%N A289237 Find the first (maximal) string, of length exactly n, of consecutive primes that alternate between types 6*k+1 and 6*k+5 or 6*k+5 and 6*k+1. The first element is a(n).
%C A289237 By the first Formula, a(21) = 809 since A289119(21) = 809 < A289119(22).
%D A289237 R. K. Guy, Unsolved Problems in Number Theory, A4.
%H A289237 Giovanni Resta, <a href="/A289237/b289237.txt">Table of n, a(n) for n = 1..43</a>
%H A289237 Jens Kruse Andersen, <a href="http://primerecords.dk/congruent-primes.htm">Consecutive Congruent Primes</a>
%F A289237 a(n) = A289119(n) if and only if n > 1 and A289119(n) < A289119(n+1).
%e A289237 {Prime[k], Mod[Prime[k], 6]} = {2, 2}, {3, 3}, {5, 5}, {7, 1}, {11, 5}, {13, 1}, {17, 5}, {19, 1}, {23, 5}, {29, 5}, {31, 1}, {37, 1}, {41, 5}, {43, 1}, {47, 5}, {53, 5}, {59, 5}, {61, 1}, {67,  1}, {71, 5}, {73, 1}, {79, 1}, . ., so a(n) = 53, 29, 67, 37 for n = 1, 2, 3, 4 and a(7) = 5.
%t A289237 i = 2; While[ Mod[ Prime[i] - Prime[i - 1], 6] != 0 || Mod[ Prime[i + 1] - Prime[i], 6] != 0, i++]; T = {Prime[i]}; Do[j = 3; While[ ! (Product[ Mod[ Prime[k + 1] - Prime[k], 6], {k, j, j + n}] != 0 && (Mod[ Prime[j] - Prime[j - 1], 6] == 0 || j == 3) && Mod[ Prime[j + n + 2] - Prime[j + n + 1], 6] == 0), j++]; T = Append[T, Prime[j]], {n, 0, 16}]; T
%Y A289237 Cf. A247384, A289118, A289119.
%K A289237 nonn
%O A289237 1,1
%A A289237 _Jonathan Sondow_, Jun 28 2017
%E A289237 a(19)-a(33) from _Giovanni Resta_, Jun 29 2017