cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289249 Number of compositions of n if only the order of parts 1 and 2 matters.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 35, 59, 98, 162, 266, 437, 713, 1163, 1893, 3077, 4995, 8105, 13139, 21293, 34492, 55858, 90438, 146406, 236974, 383538, 620703, 1004471, 1625447, 2630249, 4256087, 6886804, 11143447, 18030911, 29175137, 47206975, 76383199, 123591458
Offset: 0

Views

Author

Gregory L. Simay, Jun 29 2017

Keywords

Comments

If only the order of parts 1 and 2 matters, then the remaining parts can be frozen "[]" in a partition subsequence; e.g., a(15) would count the sequence 5,4,3,2,1 twice: [5,4,3]2,1 and [5,4,3]1,2. (Also see example.)

Examples

			For n=6, the 21 sequences counted are [6]; [5],1; [4],2; [3,3], [4],1,1; [3],2,1; [3],1,2; 2,2,2; [3],1,1,1; 2,2,1,1; 2,1,2,1; 1,2,2,1; 1,2,1,2; 1,1,2,2; 2,1,1,2; 2,1,1,1,1; 1,2,1,1,1; 1,1,2,1,1; 1,1,1,2,1; 1,1,1,1,2; and 1,1,1,1,1,1.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP[n] + Sum[Fibonacci[k] PartitionsP[n - 2 - k], {k, n - 2}], {n, 0, 50}] (* Indranil Ghosh, Jun 29 2017 *)
  • PARI
    a275388(n)=sum(k=1, n, fibonacci(k)*numbpart(n - k));
    a(n)=numbpart(n)+a275388(n - 2); \\ Indranil Ghosh, Jun 29 2017
    
  • Python
    from sympy import fibonacci, npartitions
    def a(n): return npartitions(n) + sum([fibonacci(k)*npartitions(n - 2 - k) for k in range(1, n - 1)])
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jun 29 2017

Formula

a(n) = A000041(n) + A275388(n-2), the sum of the n-th partition number and the (n-2)th convolution of partition numbers with Fibonacci numbers. E.g., a(8) = 59 = A000041(8) + A275388(6) = 22 + 37 = 59.
a(n) = A275388(n+1) - A275388(n) - A275388(n-1) + A275388(n-2).
G.f.: (1/x)*(1-x)*(1-x^2)*(g.f. of A275388) =(1/x)*(1-x)*(1-x^2)*Sum_{k=1..n} A000045(k)*A000041(n-k).

Extensions

More terms from Indranil Ghosh, Jun 29 2017