A289251 Triangle T(n, k), n > 0 and 0 <= k < n, read by rows; if gcd(n, k) = 1, then T(n, k) = modular inverse of k (mod n), otherwise T(n, k) = k.
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 3, 2, 4, 0, 1, 2, 3, 4, 5, 0, 1, 4, 5, 2, 3, 6, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 5, 3, 7, 2, 6, 4, 8, 0, 1, 2, 7, 4, 5, 6, 3, 8, 9, 0, 1, 6, 4, 3, 9, 2, 8, 7, 5, 10, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 7, 9, 10, 8, 11
Offset: 1
Examples
The first rows are: n\k 0 1 2 3 4 5 6 7 8 9 1 0 2 0 1 3 0 1 2 4 0 1 2 3 5 0 1 3 2 4 6 0 1 2 3 4 5 7 0 1 4 5 2 3 6 8 0 1 2 3 4 5 6 7 9 0 1 5 3 7 2 6 4 8 10 0 1 2 7 4 5 6 3 8 9
Links
- Rémy Sigrist, Rows n=1..100 of triangle, flattened
Programs
-
Mathematica
T[n_, k_] := If[GCD[n, k] == 1, PowerMod[k, -1, n], k]; Table[T[n, k], {n, 1, 13}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 31 2017 *)
-
PARI
T(n, k) = if (gcd(n, k)==1, lift(1/Mod(k, n)), k)
Comments