A289252 Decimal expansion of the mean number of iterations in a comparison algorithm using centered continued fractions, a constant related to Vallée's constant.
1, 0, 8, 9, 2, 2, 1, 4, 7, 3, 8, 6
Offset: 1
Examples
1.08922147386...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.19 Vallée's constant, p. 162.
Links
- Eric Weisstein's World of Mathematics, Vallée Constant.
Programs
-
Mathematica
terms = 10^6; f[i_Integer] := f[i] = NSum[1/(i^2*j^2), {j, Ceiling[ GoldenRatio * i], Floor[(1 + GoldenRatio) * i]}, WorkingPrecision -> 30]; s = 360/Pi^4 * NSum[f[i], {i, 1, Infinity}, Method -> "WynnEpsilon", NSumTerms -> terms]; RealDigits[s, 10, 12][[1]] (* updated Jun 14 2019 *)
Formula
Equals (360/Pi^4) * Sum_{i >= 1} Sum_{j=ceiling(phi*i)..floor((phi+1)*i)} 1/(i^2*j^2).
Extensions
Corrected and extended to 12 digits by Jean-François Alcover, Jun 14 2019, after Jon E. Schoenfield's pertinent comment.
Comments