This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289280 #15 Jun 07 2024 10:40:33 %S A289280 4,9,8,25,8,49,16,27,16,121,16,169,16,25,32,289,24,361,25,27,32,529, %T A289280 27,125,32,81,32,841,32,961,64,81,64,49,48,1369,64,81,50,1681,48,1849, %U A289280 64,75,64,2209,54,343,64,81,64,2809,64,121,64,81,64,3481,64,3721 %N A289280 a(n) = least integer k > n such that any prime factor of k is also a prime factor of n. %C A289280 In other words: %C A289280 - a(n) is the least k > n such that rad(k) divides rad(n), where rad = A007947, %C A289280 - or, if P_n denotes the set of prime factors of n, then a(n) is the least P_n-smooth number > n. %C A289280 For any n > 1, n < a(n) <= n*lpf(n), where lpf = A020639. %C A289280 a(p^k) = p^(k+1) for any prime p and k > 0. %C A289280 a(n) is never squarefree. %C A289280 This sequence has connections with A079277: %C A289280 - here we search the least P_n-smooth number > n, there the largest < n, %C A289280 - also, if omega(n) > 1 (where omega = A001221), %C A289280 then n/lpf(n) < A001221(n) < n, %C A289280 so n < A001221(n)*lpf(n) < n*lpf(n), %C A289280 as A001221(n)*lpf(n) is P_n-smooth, %C A289280 we have a(n) <= A001221(n)*lpf(n) < n*lpf(n), %C A289280 and n cannot divide a(n). %C A289280 The (logarithmic) scatterplot of the sequence has horizontal rays similar to those observed for A079277; they correspond to frequent values, typically with a small number of distinct prime divisors (see also scatterplots in Links section). %C A289280 Given n < a(n) <= n*lpf(n), a(n) | n^m with m >= 2. Values of m: {2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, ...}. - _Michael De Vlieger_, Jul 02 2017 %H A289280 Rémy Sigrist, <a href="/A289280/b289280.txt">Table of n, a(n) for n = 2..10000</a> %H A289280 Rémy Sigrist, <a href="/A289280/a289280.gp.txt">PARI program for A289280</a> %H A289280 Rémy Sigrist, <a href="/A289280/a289280.png">Scatterplot of the ordinal transform of the first 100000 terms</a> %H A289280 Rémy Sigrist, <a href="/A289280/a289280_1.png">Logarithmic scatterplot of the first 100000 terms</a> %e A289280 For n = 42: %e A289280 - 42 = 2 * 3 * 7, hence P_42 = { 2, 3, 7 }, %e A289280 - the P_42-smooth numbers are: 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, ... %e A289280 - hence a(42) = 48. %e A289280 From _Michael De Vlieger_, Jul 02 2017: (Start) %e A289280 a(n) divides n^m with m >= 2: %e A289280 n a(n) m %e A289280 2 4 2 %e A289280 3 9 2 %e A289280 4 8 2 %e A289280 5 25 2 %e A289280 6 8 3 %e A289280 7 49 2 %e A289280 8 16 2 %e A289280 9 27 2 %e A289280 10 16 4 %e A289280 11 121 2 %e A289280 12 16 2 %e A289280 13 169 2 %e A289280 14 16 4 %e A289280 15 25 2 %e A289280 16 32 2 %e A289280 17 289 2 %e A289280 18 24 3 %e A289280 19 361 2 %e A289280 20 25 2 %e A289280 (End) %t A289280 Table[Which[PrimeQ@ n, n^2, PrimePowerQ@ n, Block[{p = 2, e}, While[Set[e, IntegerExponent[n, p]] == 0, p = NextPrime@ p]; p^(e + 1)], True, Block[{k = n + 1}, While[PowerMod[n, k, k] != 0, k++]; k]], {n, 2, 61}] (* _Michael De Vlieger_, Jul 02 2017 *) %o A289280 (PARI) \\ See Links section. %Y A289280 Cf. A001221, A007947, A020639, A079277. %K A289280 nonn %O A289280 2,1 %A A289280 _Rémy Sigrist_, Jul 01 2017