cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A289280 a(n) = least integer k > n such that any prime factor of k is also a prime factor of n.

This page as a plain text file.
%I A289280 #15 Jun 07 2024 10:40:33
%S A289280 4,9,8,25,8,49,16,27,16,121,16,169,16,25,32,289,24,361,25,27,32,529,
%T A289280 27,125,32,81,32,841,32,961,64,81,64,49,48,1369,64,81,50,1681,48,1849,
%U A289280 64,75,64,2209,54,343,64,81,64,2809,64,121,64,81,64,3481,64,3721
%N A289280 a(n) = least integer k > n such that any prime factor of k is also a prime factor of n.
%C A289280 In other words:
%C A289280 - a(n) is the least k > n such that rad(k) divides rad(n), where rad = A007947,
%C A289280 - or, if P_n denotes the set of prime factors of n, then a(n) is the least P_n-smooth number > n.
%C A289280 For any n > 1, n < a(n) <= n*lpf(n), where lpf = A020639.
%C A289280 a(p^k) = p^(k+1) for any prime p and k > 0.
%C A289280 a(n) is never squarefree.
%C A289280 This sequence has connections with A079277:
%C A289280 - here we search the least P_n-smooth number > n, there the largest < n,
%C A289280 - also, if omega(n) > 1 (where omega = A001221),
%C A289280   then n/lpf(n) < A001221(n) < n,
%C A289280   so n < A001221(n)*lpf(n) < n*lpf(n),
%C A289280   as A001221(n)*lpf(n) is P_n-smooth,
%C A289280   we have a(n) <= A001221(n)*lpf(n) < n*lpf(n),
%C A289280   and n cannot divide a(n).
%C A289280 The (logarithmic) scatterplot of the sequence has horizontal rays similar to those observed for A079277; they correspond to frequent values, typically with a small number of distinct prime divisors (see also scatterplots in Links section).
%C A289280 Given n < a(n) <= n*lpf(n), a(n) | n^m with m >= 2. Values of m: {2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 3, 2, 2, 3, 5, 2, 3, 2, ...}. - _Michael De Vlieger_, Jul 02 2017
%H A289280 Rémy Sigrist, <a href="/A289280/b289280.txt">Table of n, a(n) for n = 2..10000</a>
%H A289280 Rémy Sigrist, <a href="/A289280/a289280.gp.txt">PARI program for A289280</a>
%H A289280 Rémy Sigrist, <a href="/A289280/a289280.png">Scatterplot of the ordinal transform of the first 100000 terms</a>
%H A289280 Rémy Sigrist, <a href="/A289280/a289280_1.png">Logarithmic scatterplot of the first 100000 terms</a>
%e A289280 For n = 42:
%e A289280 - 42 = 2 * 3 * 7, hence P_42 = { 2, 3, 7 },
%e A289280 - the P_42-smooth numbers are: 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, ...
%e A289280 - hence a(42) = 48.
%e A289280 From _Michael De Vlieger_, Jul 02 2017: (Start)
%e A289280 a(n) divides n^m with m >= 2:
%e A289280    n   a(n)    m
%e A289280    2     4     2
%e A289280    3     9     2
%e A289280    4     8     2
%e A289280    5    25     2
%e A289280    6     8     3
%e A289280    7    49     2
%e A289280    8    16     2
%e A289280    9    27     2
%e A289280   10    16     4
%e A289280   11   121     2
%e A289280   12    16     2
%e A289280   13   169     2
%e A289280   14    16     4
%e A289280   15    25     2
%e A289280   16    32     2
%e A289280   17   289     2
%e A289280   18    24     3
%e A289280   19   361     2
%e A289280   20    25     2
%e A289280 (End)
%t A289280 Table[Which[PrimeQ@ n, n^2, PrimePowerQ@ n, Block[{p = 2, e}, While[Set[e, IntegerExponent[n, p]] == 0, p = NextPrime@ p]; p^(e + 1)], True, Block[{k = n + 1}, While[PowerMod[n, k, k] != 0, k++]; k]], {n, 2, 61}] (* _Michael De Vlieger_, Jul 02 2017 *)
%o A289280 (PARI) \\ See Links section.
%Y A289280 Cf. A001221, A007947, A020639, A079277.
%K A289280 nonn
%O A289280 2,1
%A A289280 _Rémy Sigrist_, Jul 01 2017