This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289297 #24 Mar 06 2018 11:18:53 %S A289297 1,62,-4735,651070,-103766140,17999397756,-3292567703035, %T A289297 624659270035130,-121698860487451255,24194029851560118900, %U A289297 -4886913657541566648179,999849040331683393909232,-206741394604073327046805355 %N A289297 Expansion of (q*j(q))^(1/12) where j(q) is the elliptic modular invariant (A000521). %H A289297 Seiichi Manyama, <a href="/A289297/b289297.txt">Table of n, a(n) for n = 0..424</a> %F A289297 G.f.: Product_{n>=1} (1-q^n)^(A192731(n)/12). %F A289297 a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(5/4), where c = 0.200236163401945306105645017761063156355568043417672219092096121424... = 3^(1/4) * Gamma(1/4) * Gamma(1/3)^(3/2) / (2^(11/4) * exp(Pi/(4 * sqrt(3))) * Pi^2). - _Vaclav Kotesovec_, Jul 03 2017, updated Mar 06 2018 %F A289297 a(n) * A299826(n) ~ -exp(2*sqrt(3)*n*Pi) / (2^(5/2)*Pi*n^2). - _Vaclav Kotesovec_, Feb 20 2018 %t A289297 CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(1/4) / (2*QPochhammer[-1, x])^2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 23 2017 *) %t A289297 (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(1/12) + O[q]^13 // %t A289297 CoefficientList[#, q]& (* _Jean-François Alcover_, Nov 02 2017 *) %Y A289297 (q*j(q))^(k/24): A106205 (k=1), this sequence (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12). %Y A289297 Cf. A000521, A192731. %K A289297 sign %O A289297 0,2 %A A289297 _Seiichi Manyama_, Jul 02 2017