This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289302 #21 Mar 06 2018 11:29:24 %S A289302 1,217,245,231350,-27293420,4017072017,-643057897118,109259930443485, %T A289302 -19377905432572925,3549922504344871655,-666990037937425724641, %U A289302 127890778891452935279096,-24934077008209243436961385 %N A289302 Expansion of (q*j(q))^(7/24) where j(q) is the elliptic modular invariant (A000521). %H A289302 Seiichi Manyama, <a href="/A289302/b289302.txt">Table of n, a(n) for n = 0..425</a> %F A289302 G.f.: Product_{n>=1} (1-q^n)^(7*A192731(n)/24). %F A289302 a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(15/8), where c = 0.108789720644871714449969800661839212719879897088563371823367481878... = 7 * 3^(7/8) * sqrt(2 - sqrt(2)) * Gamma(1/3)^(21/4) * Gamma(7/8) / (2^(39/8) * exp(7 * Pi / (8 * sqrt(3))) * Pi^(9/2)). - _Vaclav Kotesovec_, Jul 03 2017, updated Mar 06 2018 %t A289302 CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(7/8) / (2*QPochhammer[-1, x])^7, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 23 2017 *) %t A289302 (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(7/24) + O[q]^13 // CoefficientList[#, q]& (* _Jean-François Alcover_, Nov 02 2017 *) %Y A289302 (q*j(q))^(k/24): A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), this sequence (k=7), A007245 (k=8), A289303 (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12). %Y A289302 Cf. A000521, A192731. %K A289302 sign %O A289302 0,2 %A A289302 _Seiichi Manyama_, Jul 02 2017