This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289303 #20 Mar 06 2018 11:32:12 %S A289303 1,279,8964,-129885,23406255,-3128904747,473738861853,-76824787699971, %T A289303 13098300010462845,-2318947179364181165,422782870045511526012, %U A289303 -78914282330756685655485,15016013710284896513279286 %N A289303 Expansion of (q*j(q))^(3/8) where j(q) is the elliptic modular invariant (A000521). %H A289303 Seiichi Manyama, <a href="/A289303/b289303.txt">Table of n, a(n) for n = 0..425</a> %F A289303 G.f.: Product_{n>=1} (1-q^n)^(3*A192731(n)/8). %F A289303 a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / n^(17/8), where c = 0.1186486859763112993214522284920488979797011156387080809639905476634... = 3^(25/8) * sqrt(2 - sqrt(2)) * Gamma(1/8) * Gamma(1/3)^(27/4) / (2^(65/8) * exp(3 * sqrt(3) * Pi/8) * Pi^(11/2)). - _Vaclav Kotesovec_, Jul 03 2017, updated Mar 06 2018 %t A289303 CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^(9/8) / (2*QPochhammer[-1, x])^9, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Sep 23 2017 *) %t A289303 (q*1728*KleinInvariantJ[-Log[q]*I/(2*Pi)])^(3/8) + O[q]^13 // CoefficientList[#, q]& (* _Jean-François Alcover_, Nov 02 2017 *) %Y A289303 (q*j(q))^(k/24): A106205 (k=1), A289297 (k=2), A289298 (k=3), A289299 (k=4), A289300 (k=5), A289301 (k=6), A289302 (k=7), A007245 (k=8), this sequence (k=9), A289304 (k=10), A289305 (k=11), A161361 (k=12). %Y A289303 Cf. A000521, A192731. %K A289303 sign %O A289303 0,2 %A A289303 _Seiichi Manyama_, Jul 02 2017