This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A289309 #17 Mar 05 2018 04:34:07 %S A289309 1,150,-5400,625200,-86672550,13570016400,-2289741037200, %T A289309 406440122001600,-74830416797043000,14162747887897808550, %U A289309 -2738995393669565720400,538973037306449327998800,-107578899914865970323788400,21729813219122500082762389200 %N A289309 Coefficients in expansion of E_4^(5/8). %H A289309 Seiichi Manyama, <a href="/A289309/b289309.txt">Table of n, a(n) for n = 0..425</a> %F A289309 G.f.: Product_{n>=1} (1-q^n)^(5*A110163(n)/8). %F A289309 a(n) ~ (-1)^(n+1) * c * exp(Pi*sqrt(3)*n) / n^(13/8), where c = 5 * 3^(5/4) * Gamma(1/3)^(45/4) / (256 * 2^(5/8) * Pi^(15/2) * Gamma(3/8)) = 0.2571085249207580781634342667473393997795373224370302803101380883544... - _Vaclav Kotesovec_, Jul 08 2017, updated Mar 05 2018 %t A289309 nmax = 20; CoefficientList[Series[(1 + 240*Sum[DivisorSigma[3,k]*x^k, {k, 1, nmax}])^(5/8), {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Jul 08 2017 *) %Y A289309 E_4^(k/8): A108091 (k=1), A289307 (k=2), A289308 (k=3), A289292 (k=4), this sequence (k=5), A289318 (k=6), A289319 (k=7). %Y A289309 Cf. A004009 (E_4), A110163. %K A289309 sign %O A289309 0,2 %A A289309 _Seiichi Manyama_, Jul 02 2017