A289310 Let f be the multiplicative function satisfying f(p^k) = (1 + p*I)^k for any prime p and k > 0 (where I^2 = -1); a(n) = the real part of f(n).
1, 1, 1, -3, 1, -5, 1, -11, -8, -9, 1, -15, 1, -13, -14, -7, 1, -20, 1, -23, -20, -21, 1, -5, -24, -25, -26, -31, 1, -30, 1, 41, -32, -33, -34, 0, 1, -37, -38, -1, 1, -40, 1, -47, -38, -45, 1, 65, -48, -44, -50, -55, 1, 10, -54, 3, -56, -57, 1, 10, 1, -61, -50
Offset: 1
Keywords
Examples
f(12) = f(2^2 * 3) = (1 + 2*I)^2 * (1 + 3*I) = -15 - 5*I, hence a(12) = -15.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Scatterplot of the first 1000000 terms of A289310 vs A289311
Programs
-
Mathematica
Array[Re[Times @@ Map[(1 + #1 I)^#2 & @@ # &, FactorInteger@ #]] &, 63] (* Michael De Vlieger, Jul 03 2017 *)
-
PARI
a(n) = my (f=factor(n)); real (prod(i=1, #f~, (1 + f[i,1]*I) ^ f[i,2]))
Comments